Noise Report

Strander Boulevard Extension Project

City of Tukwila, King County

Prepared for:

City of Tukwila 6200 Southcenter Boulevard Tukwila, WA 98188

Prepared by:

Widener & Associates 1902 120th Place SE Suite 202 Everett, WA 98208

March 2018

This page left blank intentionally for printing purposes.

Acronyms

dB(A)	The A-weighted sound level measured in decibels. A-weighted network = a
	frequency-equalizing function which approximates the sensitivity of human
	hearing to sounds of moderate SPL.
EB	East bound traffic lane
EPA	Environmental Protection Agency
FHWA	Federal Highway Administration
L _{eq} (1h)	The equivalent sound level (the logarithmic sum of sound exposure levels) over 1 hour
mph	Miles per hour
NAC	Noise Abatement Criteria
NB	North bound traffic lane
SB	South bound traffic lane
SEL	Sound Exposure Level
SPL	Sound Pressure Level
TNM	FHWA traffic noise model – version 2.5
WB	West bound traffic lane
WSDOT	Washington State Department of Transportation

This page left blank intentionally for printing purposes.

Executive Summary

Widener & Associates undertook this study to analyze existing and predicted future traffic noise conditions in the vicinity of the proposed Strander Boulevard Extension Project. The entire project consists of constructing a shoofly, excavating an underpass of vehicular and pedestrian traffic, as well as erecting a two-span bridge for the BNSF railroad. Other utility work by BNSF, BP Oil, ATT, SPU, and SPE are also required during the course of the project. Associated construction activities required for the above description have included or will include excavation, utility relocation, railroad shoofly embankment, grading, dewatering, storm sewer, water line, installation of shoring walls and retaining walls, paving, curb and gutter, illumination, striping, and signing. Cities of Renton and Tukwila, Pierce County, WA within Section 25 of Range 4E and Township 23N. Existing land use along the project corridor is divided light industrial and commercial.

Sound levels for the 'Existing 2017', 'No Build 2040' and 'Build 2040' conditions were derived from the Traffic Noise Model (TNM) 2.5, verified with field measurements, and compared with the Federal Highway Administration (FHWA) and the Washington State Department of Transportation (WSDOT) standards and criteria. Sound level recording and modeling was undertaken in accordance with FHWA guidelines and standards. A total of eight receivers were modeled within the project area. As per WSDOT guidelines, all receivers were modeled for the worst case hourly condition in the project area as a whole (the PM peak hour). Traffic data was collected in 2017 and forecasted for 'No Build 2040', and 'Build 2040' conditions.

This study shows that noise above established thresholds (as defined by FHWA/WSDOT) occurs at three locations along the project corridor. The 2040 Build scenario does not predict a substantial increase over the existing condition at any of the eight receivers. The greatest increase in sound level under the 'Build 2040' condition compared to existing conditions is 3 dB at receiver 3. The greatest sound level experienced under the 'Build 2040' condition is 73 dB(A) at receivers 2 and 7. See table below for modeled results for all conditions.

Receivers		Existing	No Build	Build	Impact Approach	Impact Substantial	
Number	Name/Description	(2017) LAeq1hr	(2040) LAeq1hr	(2040) LAeq1hr	Noise Level Criteria	Increase Criteria	
V-1	Validation Site 1	75	76	76	-	-	
V-2	Validation Site 2	73	74	74*	-	-	
3	Restaurant	68	70	73	71	10	
4	Offices 1	59	60	63	71	10	
5	Offices 2	63	64	67	71	10	
6	Offices 3	57	58	60	71	10	
7	Credit Union	71	72	73	71	10	
8	Interurban Trail	66	67	69	66	10	

Summary of results for the Existing, No Build 2040, and Build 2040 conditions

*This location is only used for validation. The noise level in the build condition is only estimated due to proximity to the roadway and is not subject to consideration of abatement measures.

Based on the results of this study, abatement measures were fully evaluated in accordance with Federal Highway Administration and Washington State Department of Transportation noise abatement policy. It was concluded that none of the abatement measures are 'feasible or reasonable' by Federal Highway Administration/Washington State Department of Transportation criteria.

Table of Contents

1. Introduction 1
1.1 Noise Characteristics and Measurement 1 1.1.1 Defining Noise 1
1.1.2 Measuring Noise 1 2. Project Description 3
2.1 Location
 2.2 Proposed Work
4. Methods
 4.1 Field Data Collection
4.2.1 Receivers
5.1 Existing Noise Environment
5.1.1 Field Measurement
5.2 Future Noise Environment
5.4 Construction Noise

Appendix A: Calibration Certificates

Appendix B: Data Used in the Model

Appendix C: Sound Level Data Sheets

List of Tables

Table 1: Sound Pressure Levels of Representative Sounds and Noises	2
Table 2: FHWA noise abatement criteria	10
Table 3: Summary of results for the Existing, No Build 2040, and Build 2040 conditions	17
Table 4: Typical construction equipment noise levels	19

List of Figures

Figure 1: Vicinity Map	. 5
Figure 2: Land Use Designations	. 7
Figure 3: Receiver Locations	15

1. Introduction

The purpose of this report is to document and analyze existing traffic noise conditions and predict future traffic noise conditions in the vicinity of the proposed Strander Boulevard Project, in Tukwila, WA. Sound levels for the 'Existing 2017', 'No Build 2040' and 'Build 2040' conditions were compared with the FHWA / WSDOT standards and criteria. Sound levels were derived from the FHWA approved noise model, TNM 2.5. Calculations generated by the model were verified using field measurements in accordance with FHWA and WSDOT requirements. This report was used to determine whether or not noise abatement measures should be warranted as part of the proposed project, and as appropriate, to make recommendations regarding such options.

1.1 Noise Characteristics and Measurement

1.1.1 Defining Noise

Noise is defined as unwanted sound (Maekawa and Lord., 1994; Bell *et al.*, 1996; Berglund *et al.*, 1996). Noise is recognized as having both a physical and a psychological component. The physical component is set, while the psychological component (the degree of annoyance) depends on the listener and their physiological and psychological state as well as the frequency and time of the varying pattern of the sound. Low frequency (particularly anthropogenic sources) and impulse sounds are thought to result in higher levels of annoyance (Hall *et al.*, 1981; Maekawa and Lord, 1994; Bell *et al.*, 1996; Berglund *et al.*, 1996).

1.1.2 Measuring Noise

When measuring noise, the decibel scale, the A-weighted network, and the descriptor L_{eq} are usually used to describe and quantify the noise levels experienced by a receiver. These descriptors are described in the following paragraphs.

The decibel scale is a logarithmic scale, derived from the Pascal scale and based on sound pressure levels (the physical correlate of loudness). The threshold of human hearing is at 20 micropascals or 0 dB. A change of 20 dB corresponds to a ten-fold increase in micropascals. Thus, 20 dB is equivalent to 200 micropascals. However, the decibel scale provides a better approximation of the perception of loudness than the Pascal scale, 1 dB indicates the same fractional change in sound pressure at all levels. Generally, a 3 dB increase is barely perceptible

to human listeners. A 6 dB increase corresponds to a doubling of the sound pressure; however, a 10 dB increase is necessary for the sound to be perceived as being twice as loud (FHWA, 1995; Maekawa *et al.*, 1994; Boeker and Van Grondelle, 1995). Refer to Table 1 for examples of typical sound source levels.

Source	Decibels	Description
Large rocket engine (nearby)	180	
Jet take-off (nearby)	150	
Pneumatic riveter	130	Pain threshold
Jet take-off (60 meters)	120	
Construction noise (3 meters)	110	
Subway train	100	
Heavy truck (15 meters) and	90	Constant ornosuro
Niagara Falls	80	constant exposure
Average factory	70	enuangers near mg
Normal conversation (1 meter)	60	
Quiet office	50	
Quiet Library	40	
Soft whisper (5 meters)	30	
Rustling leaves	20	
Normal breathing	10	Very quiet
Hearing threshold	0	Barely audible

Table 1: Sound Pressure Levels of Representative Sounds and Noises

Source: Tipler 1976

The type of weighting curve used in measuring sound is important in determining the accuracy of the result as a measure of the impact of the sound on those hearing it. The frequency of sound determines the ability of the human auditory system to detect it. As the sound of a constant sound pressure level decreases in frequency from about 1 kHz or increases in frequency from about 5 kHz, its perceived loudness decreases. Therefore, in order to measure what is actually being heard by humans, measurement of sound pressure level is adjusted to account for the relative loudness of the frequency through the use of weighting networks (A, B and C) in sound level meters. Networks are based on approximate equal-loudness contours rather than the hearing threshold curve. The A-weighted network is considered to most accurately represent human perception of noise (Maekawa and Lord, 1994; Boeker and Van Grondelle, 1995; Berglund *et al.*, 1996).

The descriptor used to measure traffic-induced sound levels in this study is dB(A) $L_{eq}(1h)$, which is defined as the equivalent A-weighted sound level [the logarithmic sum of sound exposure levels (SELs)] over 1 hour.

2. Project Description

2.1 Location

The proposed project is located in the Cities of Renton and Tukwila, Pierce County, WA. The legal geographic area is Section 25 of Range 4E and Township 23N. Existing land use along the project corridor is divided light industrial and commercial. Refer to Figure 1 for the project vicinity and Figure 2 for land use designations.

2.2 Proposed Work

The entire project consists of constructing a shoofly, excavating an underpass of vehicular and pedestrian traffic, as well as erecting a two-span bridge for the BNSF railroad. Other utility work by BNSF, BP Oil, ATT, SPU, and SPE are also required during the course of the project. Associated construction activities required for the above description have included or will include excavation, utility relocation, railroad shoofly embankment, grading, dewatering, storm sewer, water line, installation of shoring walls and retaining walls, paving, curb and gutter, illumination, striping, and signing.

This page intentionally left blank for printing purposes.

Figure 1: Vicinity Map Strander Boulevard Extension Project City of Renton

This page intentionally left blank for printing purposes.

Figure 2: Land Use Designations

Strander Boulevard Extension Project City of Renton

This page intentionally left blank for printing purposes.

3. Criteria for Determining Impacts

This section discusses applicable noise regulations and agency guidelines that provide the basis for evaluating potential noise impacts and mitigation or abatement for a proposed project. Noise regulations and guidelines for federally funded highway projects in Washington are established by WSDOT and the FHWA. The FHWA (23 C.F.R. §772.5(g)) defines traffic noise impacts to occur either when:

- predicted traffic noise levels approach or exceed the noise abatement criteria;
- predicted traffic noise levels substantially exceed the existing noise levels; or
- predicted traffic noise levels are severe noise levels

WSDOT has defined 'approach' to be within 1 dB(A) below the FHWA noise abatement criteria of 67 dB(A) and has defined 'substantially exceed' to be a 10 dB(A) increase over existing noise levels. A severe impact is defined as a level greater than 80 dB(A) $L_{eq}(1h)$.

Therefore, a noise impact is determined to occur when predicted noise levels 'approach' or 'exceed' the FHWA noise abatement criteria¹ as given in Table 1 or when predicted noise levels are 10 dB(A) or greater over the existing level. For example, traffic noise impacts for Activity Category B (residences, schools etc.) would occur if predicted noise levels were to be equal or greater than 66 dB(A) L_{eq} (1h).

 $^{^1}$ Noise standards that specify exterior $\mathrm{L}_{\mathrm{eq}}(h)$ noise levels for various land activity categories.

 Table 2: FHWA noise abatement criteria

Activity Category	L _{eq} (1h) dB(A)	Description of Activity Category
А	57 (exterior)	Lands on which serenity and quiet are of extraordinary significance and serve an important public need and where the preservation of those qualities is essential if the area is to continue to serve its intended purpose.
В	67 (exterior)	Residential (single and multi-family units)
C	67 (exterior)	Active sports centers, amphitheaters, auditoriums, campgrounds, cemeteries, day care centers, hospitals, libraries, medical facilities, parks, picnic areas, places of worship, playgrounds, public meeting rooms, public or nonprofit institutional structures, radio studios, recording studios, recreational areas, Section 4(f) sites, schools, television studios, trails, and trail crossings.
D	52 (interior)	Auditoriums, day care centers, hospitals, libraries, medical facilities, places of worship, public meeting rooms, public or nonprofit institutional structures, radio studios, schools, and television studios.
E	72 (exterior)	Hotels, motels, offices, restaurants/bars, and other developed lands, properties or activities not included in A-D or F. Includes undeveloped land permitted for these activities.
F	-	Agriculture, airports, bus yards, emergency services, industrial, logging, maintenance facilities, manufacturing, mining, retail facilities, shipyards, utilities (water resources, water treatment, and electrical), and warehousing.
G	-	Undeveloped lands that are not permitted

Source: 23 C.F.R. Part 772

Sound levels generated by any proposed project are primarily compared to the FHWA / WSDOT standards and criteria rather than to the 'Existing' condition or to the 'No Build 2040' condition. The project proponent is required to consider mitigation options when the proposed project meets or exceeds FHWA / WSDOT standards and criteria in the future build condition. In a case where the criteria are exceeded by a lesser degree as a result of the proposed project than under the 'Existing' condition, the project proponent is still required to consider mitigation options.

4. Methods

4.1 Field Data Collection

Sound levels were recorded in the field on December 30, 2017. Sound level recordings were made at two sites along the project corridor between 1:45 and 3 pm. Refer to Figure 3 and the data sheets provided in Appendix C. Recordings were made using a Larson and Davis Type 1 Sound Level Meter (model 820) and the following variables:

Descriptor: L_{eq}

• Sample rate, 15 minutes

Integration rate: Fast

• Weighting, A

The timing and source of other noises perceptible above the traffic noise were also noted. The sound level meter, microphone, and calibrator were within factory calibration. Calibration certificates for the meter, microphone, and calibrator are provided in Appendix A. The microphone was placed 5 feet off the ground and the site chosen was an area of potential outdoor human use (refer to Appendix C).

Traffic data collected in the field was used to validate the model in accordance with FHWA and WSDOT requirements. Traffic data and weather conditions collected in the field at the time of the sound recording were entered into the model. The following traffic data and baseline information was collected during each 15-minute sound recording interval:

- total numbers of each traffic type (automobiles, medium trucks [2 axles and 6 tires] heavy trucks [greater than 2 axles / 6 tires], buses, and motorbikes) directionally separated;
- average speed
- temperature
- humidity

Sound levels calculated by the model were compared with those recorded in the field. The acceptable margin of error between the field recordings and the modeled results were plus or minus 2 dB(A). The difference between the field recordings and modeled results for all sites were within 2 dB(A).

4.2 Traffic Noise Model

The FHWA traffic noise model version 2.5 (TNM) was used to model the existing and future ('Build 2040' and 'No Build 2040') road traffic-induced noise environment within the project area.

4.2.1 Receivers

A total of eight receivers were modeled. All but one of these receivers are characterized as 'Activity Category E' receivers. For all Category E receivers, the impact criterion is 71 dB(A). One receiver is characterized as a 'Activity Category C' receiver. The impact criterion is 66dB(A).

Receivers were chosen based on the following factors:

- 1. Proximity to the existing and proposed roadway. Sites most likely to be impacted were favored.
- Location along the corridor. Receivers were selected along the length of the project corridor and extend out from the road to such a distance to ensure that all traffic noise impacts are included. Modeling limits are extended to reach any location which reaches 65 dB(A) to ensure the full impacted area is captured.
- 3. Primary areas of outdoor use. Receivers were placed at sites which appeared to have the most foot traffic.
- 4. Sites which would be removed as a result of the proposed project or which were too close to the roadway to model were not selected.

As per WSDOT guidelines, all receivers were modeled for the worst case condition in the project area as a whole (the PM peak hour) for 2017 and 2040.

4.2.2 Traffic Data

4.2.2.1 Existing Condition

Traffic Data

Traffic data for the PM Peak Hour were provided by Fehr and Peers based on tube counts conducted within the project corridor. Traffic was directionally separated and provided percentages of vehicle type (Refer to Appendix B). Speeds along the corridor were based on posted speed limits.

4.2.2.2 No Build 2040 Condition

Traffic numbers on existing roads were used to predict traffic numbers on the new road by Fehr and Peers. Percentages of vehicle types were assumed to be the same as for the 'Existing 2017' condition. Refer to Appendix B for the traffic data and the vehicle percentages used to model the 'No Build 2040' condition. The posted speed for each roadway was used, resulting in the worst hourly noise conditions.

4.2.2.3 Build 2040 Condition

Predicted counts were also used to model the 'Build 2040' condition. Percentages of vehicle types were assumed to be the same as for the 'Existing 2012' and 'No Build 2040' conditions. The proposed posted speed for the new roadway. Remaining roadways were assumed to have the same posted speed. Refer to Appendix B for the data used to model the 'Build 2040' condition.

5. Results

5.1 Existing Noise Environment

5.1.1 Field Measurement

Sound levels were recorded in the field at two sites along the project corridor. Data from the site was compared to the modeled results (based on traffic data collected during the sound level recording) in order to validate the model in accordance with WSDOT requirements. WSDOT requirements. WSDOT requires that the modeled results and the field measurements come within plus or minus 2 dB(A) of one another. Site one (Receiver 1) was located on the sidewalk south of the intersection of W Valley Highway and Strander Boulevard. Site two (Receiver 2) was located on the east side of the project on SW 27th Street near the intersection with Naches Avenue SW. These sites were chosen as they represent the conditions within the project area, however they do not require noise abatement consideration. The L_{eq} levels measured in the field were 71.4 dB(A) for site one. The L_{eq} levels calculated by the model were 70.2 dB(A) for site one. The L_{eq} levels measured in the field were 51.8 dB(A) for site two. The L_{eq} levels calculated by the model mere 59.9 dB(A) for site two. Therefore, the result is within the acceptable margin of error and modeling of all receivers under all conditions (Existing, No Build, and Build) could proceed. The meter was correctly calibrated at the time of recording. All field validation sites are depicted in Figure 3.

Environmental conditions recorded during field measurements are as follows:

- Temperature, 49°F;
- Relative Humidity, 65%;

Sound levels at the field recording site was dominated by vehicular traffic. Refer to the data sheets provided in Appendix C.

- Receiver
- Validation

Figure 3: Receiver Locations

Strander Boulevard Extension Project City of Renton

· Proposed Road

March 2017

This page intentionally left blank for printing purposes.

5.2 Future Noise Environment

Of the eight receivers modeled, three exceeded the FHWA/WSDOT sound level criteria under the build condition. Receivers 7 and 8 exceeded the sound level criteria under all conditions. Refer to Table 3 for the results of existing sound levels modeled at all receivers and to Figure 3 for the locations.

The 2040 Build scenario does not predict a substantial increase over the existing condition at any of the eight receivers. The greatest increase in sound level under the 'Build 2040' condition compared to existing conditions is 5 dB at receiver 3. The greatest sound level experienced under the 'Build 2040' condition is 73 dB(A) at receivers 3 and 7.

Receivers		Existing	No Build	Build	Impact Approach	Impact Substantial	
Number	Name/Description	(2017) LAeq1hr	(2017) (2040) LAeq1hr LAeq1hr		Noise Level Criteria	Increase Criteria	
1	Validation Site 1	75	76	76	-	-	
2	Validation Site 2	73	74	74*	-	-	
3	Restaurant	68	70	73	71	10	
4	Offices	59	60	63	71	10	
5	Offices 2	63	64	67	71	10	
6	Office 3	57	58	60	71	10	
7	Credit Union	71	72	73	71	10	
8	Interurban Trail	66	67	69	66	10	

Table 3: Summary of results for the Existing, No Build 2040, and Build 2040 conditions

*This location is only used for validation. The noise level in the build condition is only estimated due to proximity to the roadway and is not subject to consideration of abatement measures.

5.3 Summary of Modeled Results

This study shows that noise above established thresholds (as defined by FHWA/WSDOT) occur at three locations along the project corridor. The 2040 Build scenario does not predict a substantial increase over the existing condition at any of the eight receivers. The greatest increase in sound level under the 'Build 2040' condition compared to existing conditions is 5 dB at receiver 3. The greatest sound level experienced under the 'Build 2040' condition is 73 dB(A) at receivers 3 and 7.

Based on the results of this study, receivers experience traffic noise impacts as a result of the proposed project and therefore require abatement consideration in accordance with FHWA and WSDOT policy.

5.4 Construction Noise

Short-term noise impacts would occur as a result of construction activities. General construction activities (such as grading, laying base, and paving) would take place as part of the proposed project. Based on WSDOT guidance, short-term noise impacts are expected to radiate up to a maximum of one mile from the project area. Based on the data tabulated by the Environmental Protection Agency (EPA) and WSDOT, sound levels generated during construction are not expected to exceed 95 dB(A). Construction equipment sounds (usually point source) decrease about 6 dB(A) with every doubling of distance. Table 4 depicts typical construction equipment sound levels 50 feet from there source. Surrounding areas would temporarily experience higher noise levels as a result of construction.

Table 4: Typical construction equipment noise levels

Source: EPA, 1971 and WSDOT, 1991.

The City of Tukwila's noise ordinance, chapter 8.22.110, define the following as exempt during daytime hours:

3. Sounds created by construction or the movement of construction-related materials, including but not limited to, striking or cutting sounds from hammers, saws or equipment with electrical or internal combustion engines emanating from temporary construction sites.

As defined in chapter 8.22.020:

"Daytime" means 7AM-10PM, Monday through Friday and 8AM-10PM, Saturday, Sunday and State-recognized holidays.

None of the areas around the project are zoned for residential use; no potential impacts to residential zones is possible. The construction noise from this project is exempt from the City of Tukwila and Renton's municipal code during daytime hours and is not required to be mitigated. However, there are some simple techniques that can be put into place to reduce the noise impacts for nearby offices or people passing by the construction area:

- Minimize construction noise by turning off engines when not in use.
- Back up alarms can produce some objectionable sound, although they are exempt from the state noise ordinance. It is recommended that vehicles drive forward as much as possible to avoid the use of back-up alarms.
- Substitute hydraulic or electric models for impact tools such as rock drills or jackhammers.

6. Mitigation Needs

As discussed in Section 3, the project proponent is required to consider mitigation options when the proposed project meets or exceeds FHWA/ WSDOT criteria/standards regardless of whether or not the criteria/standards were met or exceeded under the 'Existing' condition. As this study identifies noise impacts, mitigation measures need to be fully evaluated in accordance with FHWA and WSDOT noise abatement policy for receivers that would be impacted by the proposed project. FHWA and WSDOT require that construction of noise barriers be evaluated for feasibility and reasonableness.

Feasibility deals primarily with engineering considerations such as whether or not a substantial reduction in sound levels can be achieved and whether or not abatement measures would affect property access. To be feasible, a noise wall must be constructed to achieve a reduction of at least 5 dB(A) for the majority of impacted first row receivers. Reasonableness assesses the practicality of the abatement measure including: cost, the amount of noise reduction, and future traffic levels. To be reasonable, a noise reduction of at least 7 dB(A) at one sensitive receiver must be achieved. The WSDOT noise mitigation cost per residence is given in the following table.

Design Year Traffic Noise Decibel Level	Allowed Cost Per Household *	Equivalent Wall Surface Area Per Household
66 dBA	\$36,127	700 ft ²
67 dBA	\$39,636	768 ft ²
68 dBA	\$43,146	836 ft ²
69 dBA	\$46,665	904 ft ²
70 dBA	\$50,165	972 ft ²
71 dBA	\$53,674	1040 ft ²
72 dBA	\$57,184	1108 ft ²
73 dBA	\$60,693	1176 ft ²
74 dBA	\$64,203	1244 ft ²

Table 5:	Noise	mitigation	cost per	residence
1 4010 00	110150	inition Sector	cost per	restaence

*Reevaluated each year. Based on \$51.61 per square foot constructed cost (WSDOT, 2011) <u>Note:</u> the allowed cost per household (or residential equivalent) can be used for the full range of mitigation options including the construction of barriers and the acquisition of property. There are three receivers which meet or exceed noise level criteria. These receivers are a credit union office, the interurban trail, and fast food restaurant which are designated as Category E receivers. In order to maintain access to these businesses and their parking lots, a noise wall is not feasible. The Interurban Trail runs parallel to the W Valley Highway in this location and will be rerouted at the crossing of Strander Boulevard during project construction. No feasible wall location exists which would reduce noise from W Valley Highway and access across Strander Boulevard must be maintained.

- 23 C.F.R. Part 772, Procedures for Abatement of Highway Traffic Noise and Construction Noise
- Bell, P.A., Greene, T.C., Fisher, J.D., Baum, A., 1996, *Environmental Psychology* 4th Ed. Harcourt Brace College Publishers, Florida, USA.
- Berglund, B., Hassmen, P., Job, R. F. S., 1996, 'Sources and effects of low-frequency noise'. *Journal of the Acoustical Society of America*, v99, n5, p2985 - 3002.
- Boeker, E., Van Grondelle, R., 1995, Environmental Physics. John Wiley & Sons Ltd, UK.
- City of Tukwila, Municipal Code. Title 8. Accessed on March 19, 2018. <u>http://records.tukwilawa.gov/weblink/1/edoc/56243/Tukwila%20Municipal%20Code%2</u> <u>0-%20Title%2008%20-%20Public%20Peace%20and%20Safety.pdf</u>

City of Renton. 2015. Zoning Map. Accessed March 19, 2018. <u>https://www.rentonwa.gov/UserFiles/Servers/Server_7922657/File/City%20Hall/Administrative</u>%20Services/Information%20Technology/GIS/Zoning.pdf

City of Tukwila. 2015. Zoning Map. Accessed March 19, 2018. http://www.tukwilawa.gov/wp-content/uploads/Comp-Plan_Zoning-Map.pdf

- FHWA, June 1995, Highway Traffic Noise Analysis and Abatement Policy and Guidance, USDOT, FHWA, Office of Environment and Planning, Noise and Air Quality Branch, Washington DC
- Hall, F.L., Birnie, S., Taylor, M., Palmer, J.E., 1981, 'Direct comparison of community response to road traffic noise and to aircraft noise'. *Journal of the Acoustical Society of America*, v70, n6, p1690-1698.
- Maekawa, Z., Lord, P., 1994, *Environmental and Architectural Acoustics*. E & FN SPON, London, UK.
- WSDOT. 2011 Traffic Noise Policy and Procedures. July 13.

This page intentionally left blank for printing purposes.

This page intentionally left blank for printing purposes.

Certificate of Calibration and Conformance

Certificate Number 2017-206082

Instrument Model PRM828, Serial Number 2422, was calibrated on 14 Dec 2017. The instrument meets factory specifications per Procedure D0001.8135.

Instrument found to be in calibration as received: YES Date Calibrated: 14 Dec 2017 Calibration due: 14 Dec 2018

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	19 Dec 2017	2016-204448
Agilent Technologies	34401A	MY41038589	12 Months	6 Sep 2018	2017009650

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 23 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data.

Technician: Sean Childs

Page 1 of 1

Frequency response electrically tested at 120.0 dB μ V using a 18 pF capacitor to simulate microphone capacitance.

Frequency (Hz)

Frequency (Hz)	Relative Level (dB)	Uncertainty (dB)	Limits (dB)	Frequency (Hz)	Relative Level (dB)	Uncertainty (dB)	Limits (dB)
2.5	-0.86	0.08	-0.46,-1.02	631.0	-0.00	0.02	0.10,-0.10
3.2	-0.60	0.06	-0.25,-0.73	794.3	-0.00	0.02	0.10,-0.10
4.0	-0.42	0.06	-0.12,-0.52	1000.0	0.00	0.02	0.10,-0.10
5.0	-0.29	0.04	-0.02,-0.40	1258.9	0.00	0.02	0.10,-0.10
6.3	-0.19	0.04	0.05,-0.31	1584.9	0.00	0.02	0.10,-0.10
7.9	-0.13	0.04	0.08,-0.26	1995.3	0.00	0.02	0.11,-0.11
10.0	-0.09	0.02	0.11,-0.22	2511.9	0.00	0.02	0.11,-0.11
12.6	-0.06	0.02	0.13,-0.20	3162.3	0.00	0.02	0.11,-0.11
15.8	-0.04	0.02	0.13,-0.18	3981.1	0.00	0.02	0.11,-0.11
20.0	-0.04	0.02	0.13,-0.16	5011.9	-0.00	0.02	0.12,-0.12
25.1	-0.03	0.02	0.13,-0.15	6309.6	-0.00	0.02	0.12,-0.12
31.6	-0.02	0.02	0.14,-0.14	7943.3	-0.01	0.02	0.12,-0.13
39.8	-0.02	0.02	0.14,-0.14	10000.0	-0.01	0.02	0.12,-0.13
50.1	-0.01	0.02	0.13,-0.14	12589.3	-0.01	0.02	0.12,-0.14
63.1	-0.01	0.02	0.13,-0.13	15848.9	-0.02	0.02	0.11,-0.15
79.4	-0.01	0.02	0.13,-0.13	19952.6	-0.04	0.02	0.09,-0.17
100.0	-0.01	0.02	0.12,-0.12	25118.9	-0.07	0.02	inf,-inf
125.9	-0.01	0.02	0.12,-0.12	31622.8	-0.11	0.02	inf ,-inf
158.5	-0.00	0.02	0.12,-0.12	39810.7	-0.18	0.02	inf,-inf
199.5	-0.02	0.02	0.12,-0.12	50118.7	-0.30	0.02	inf,-inf
251.2	-0.01	0.02	0.12,-0.12	63095.7	-0.53	0.05	inf,-inf
316.2	-0.01	0.02	0.11,-0.11	79432.8	-0.99	0.05	inf ,-inf
398.1	-0.01	0.02	0.11,-0.11	100000.0	-1.87	0.05	inf ,-inf
501.2	-0.00	0.02	0.10,-0.10	125892.5	-3.11	0.06	inf , -in f

1000 Hz measured level: 118.644 dBµV, -1.356 dB re input (0.033 dB uncertainty; -1.533 dB to -0.567 dB limit)

1 kHz (1/3 Octave) Noise Floor : $0.32 \ \mu$ V, -9.80 dB μ V (0.47 dB uncertainty; -3.00 dB limit) Flat (20 Hz - 20 kHz) Noise Floor : $3.39 \ \mu$ V, 10.61 dB μ V (0.47 dB uncertainty; 17.00 dB limit) A-weight Noise Floor : 1.72 μ V, 4.72 dB μ V (0.46 dB uncertainty; 13.00 dB limit) Environmental conditions: 23.9 °C, 24.0 %RH (0.3 °C, 3 %RH uncertainty) Uncertainties are given as expanded uncertainty at ~95 percent confidence level (k = 2). Test Procedure: D0001.8135 with PRM828 (SMD).xml

This report may not be reproduced, except in full, without the written approval of the issuer.

Technician: Sean Childs

Test Date: 14 Dec 2017 11:07:41

Test Location: Larson Davis, a division of PCB Piezotronics, Inc. 1681 West 820 North, Provo, Utah 84601 Tel: 716 684-0001 www.LarsonDavis.com

Certificate of Calibration and Conformance

Certificate Number 2017-206083

Instrument Model 820, Serial Number 1518, was calibrated on 14 Dec 2017. The instrument meets factory specifications per Procedure D0001.8160, ANSI S1.4 1983, IEC 651-Type 1 1979, and IEC 804-Type 1 1985.

Instrument found to be in calibration as received: YES Date Calibrated: 14 Dec 2017 Calibration due: 14 Dec 2018

Calibration Standards Used

MANUFACTURER	MODEL	SERIAL NUMBER	INTERVAL	CAL. DUE	TRACEABILITY NO.
Larson Davis	LDSigGn/2209	0617 / 0104	12 Months	19 Dec 2017	2016-204448

Reference Standards are traceable to the National Institute of Standards and Technology (NIST)

Calibration Environmental Conditions

Temperature: 24 ° Centigrade

Relative Humidity: 23 %

Affirmations

This Certificate attests that this instrument has been calibrated under the stated conditions with Measurement and Test Equipment (M&TE) Standards traceable to the U.S. National Institute of Standards and Technology (NIST). All of the Measurement Standards have been calibrated to their manufacturers' specified accuracy / uncertainty. Evidence of traceability and accuracy is on file at Provo Engineering & Manufacturing Center. An acceptable accuracy ratio between the Standard(s) and the item calibrated has been maintained. This instrument meets or exceeds the manufacturer's published specification unless noted.

The collective uncertainty of the Measurement Standard used does not exceed 25% of the applicable tolerance for each characteristic calibrated unless otherwise noted.

The results documented in this certificate relate only to the item(s) calibrated or tested. A one year calibration is recommended, however calibration interval assignment and adjustment are the responsibility of the end user. This certificate may not be reproduced, except in full, without the written approval of the issuer.

"As received" data is the same as shipped data. Tested with PRM828 S/N 2422

Technician: Sean Childs

Sound Level Meter Model: 820A Serial Number: A1518 Log Linearity, Differential Linearity and Range Data

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's Log Linerarity A-weighted slow response was then electrically tested using a 1kHz sine wave from 18.0 dBSPL to 138.0 dBSPL in 0.5 dB increments.

Plotted per typical sensitivity of a 2541 microphone; 44.5 mV/Pa & 17.1 pF.

Overload occurs at 129.5 dBSPL.

Primary indicator range: 105.4 dB (lower limit: 24.0 dBSPL to upper limit: 129.4 dBSPL). Dynamic range: 111.6 dB (noise floor: 17.8 dBSPL to upper limit: 129.4 dBSPL).

This instrument is in compliance with IEC 60651 (2001-10) 7.9 and 7.10, ANSI S1.4-1983 3.2 and IEC 60804 (2001-10) 9.2.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Sean Childs Test Date: 14DEC2017

Sound Level Meter Model: 820A Serial Number: A1518 Certificate of A-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's A-weighted response was then electrically tested using a 1.9 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.

This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Sean Childs Test Date: 14DEC2017

Sound Level Meter Model: 820A Serial Number: A1518 Certificate of C-Weight Electrical Conformance

This Type 1 Sound Level Meter (including attached PRM828 preamplifier and ADP005 18 pF input adapter) was calibrated with a reference 1kHz sine wave at a level of 114.0 dBSPL. The instrument's C-weighted response was then electrically tested using a 1.9 Vrms sinewave at exact frequencies as specified in IEC 60651 (2001-10) and ANSI S1.4-1983.

This instrument is in compliance with IEC 60651 (2001-10) 6.1 and 9.2.2, ANSI S1.4-1983 5.1 and 8.2.1, and IEC 60804 (2001-10) 5.1 for Type 1 sound level meters when used with a Larson Davis Type 1 microphone.

Technician: Sean Childs Test Date: 14DEC2017

Calibration Certificate

Certificate Number 2017013075 Customer: Widener & Associates 1902 120th Place SouthEast Suite 202 Everett, WA 98208, United States

Model Number Serial Number	CAL200 4920		Procedure Number Technician	D0001 Scott N	.8386 Nontgor	nery
Test Results	Pass		Calibration Date	14 Dec	c 2017	
Initial Condition	Adjusted		Calibration Due	14 Dec	c 2018	
Initial Condition	Aujusteu		Temperature	23	°C	± 0.3 °C
Description Larson I		avis CAL200 Acoustic Calibrator	Humidity	34	%RH	± 3 %RH
			Static Pressure	101.3	kPa	±1kPa
Evaluation Metho	d	The data is aquired by the insert voltage c circuit sensitivity. Data reported in dB re 20	alibration method using the) μPa.	e referei	nce mic	rophone's open
Compliance Stand	dards	Compliant to Manufacturer Specifications IEC 60942:2003	per D0001.8190 and the fo NSI S1.40-2006	ollowing	standa	ards:

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used							
Description	Cal Date	Cal Due	Cal Standard				
Agilent 34401A DMM	09/06/2017	09/06/2018	001021				
Larson Davis Model 2900 Real Time Analyzer	04/10/2017	04/10/2018	001051				
Microphone Calibration System	08/08/2017	08/08/2018	005446				
1/2" Preamplifier	10/05/2017	10/05/2018	006506				
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/08/2017	08/08/2018	006507				
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510				
Pressure Transducer	06/01/2017	06/01/2018	007310				

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

12/14/2017 10:43:12AM

Certificate Number 2017013075 Output Level

Nominal Level [dB]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
114	100.9	114.00	113.80	114.20	0.13	Pass
94	101.3	94.02	93.80	94.20	0.14	Pass

-- End of measurement results--

Frequency

Nominal Level [dB]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
94	101.3	1,000.16	990.00	1,010.00	0.20	Pass
114	100.9	1,000.14	990.00	1,010.00	0.20	Pass

-- End of measurement results--

Total Harmonic Distortion + Noise (THD+N)

Nominal Level	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	D II
[dB]	[kPa]	[%]	[%]	[%]	[%]	Result
94	101.3	0.52	0.00	2.00	0.25	Pass
114	100.9	0.53	0.00	2.00	0.25	Pass

-- End of measurement results--

Level Change Over Pressure

Tested at: 114 dB, 22 °C, 35 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
101.3	101.0	0.00	-0.30	0.30	0.04 ‡	Pass
108.0	107.6	0.02	-0.30	0.30	0.04 ‡	Pass
92.0	92.0	-0.03	-0.30	0.30	0.04 ‡	Pass
83.0	82.9	-0.05	-0.30	0.30	0.04 ‡	Pass
74.0	74.1	-0.05	-0.30	0.30	0.04 ‡	Pass
65.0	65.0	-0.02	-0.30	0.30	0.04 ‡	Pass

-- End of measurement results--

Frequency Change Over Pressure

Tested at: 114 dB, 22 °	'C, 35 %RH					
Nominal Pressure [kPa]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
101.3	101.0	0.00	-10.00	10.00	0.20 ‡	Pass
92.0	92.0	0.00	-10.00	10.00	0.20 ‡	Pass
108.0	107.6	0.01	-10.00	10.00	0.20 ‡	Pass
83.0	82.9	0.00	-10.00	10.00	0.20 ‡	Pass
74.0	74.1	-0.01	-10.00	10.00	0.20 ‡	Pass
65.0	65.0	-0.01	-10.00	10.00	0.20 ‡	Pass

-- End of measurement results--

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

12/14/2017 10:43:12AM

D0001.8410 Rev A

Certificate Number 2017013075 Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 22 °C, 35 %RH

Nominal Pressure	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	Dent
[kPa]	[kPa]	[%]	[%]	[%]	[%]	Result
74.0	74.1	0.50	0.00	2.00	0.25 ‡	Pass
65.0	65.0	0.50	0.00	2.00	0.25 ‡	Pass
108.0	107.6	0.54	0.00	2.00	0.25 ‡	Pass
101.3	101.0	0.53	0.00	2.00	0.25 ‡	Pass
92.0	92.0	0.52	0.00	2.00	0.25 ‡	Pass
83.0	82.9	0.51	0.00	2.00	0.25 ‡	Pass
			End of measureme	nt results		

Signatory: _Scott Montgomery

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

12/14/2017 10:43 12AM

D0001.8410 Rev A

Initial Assessment

Certificate Number 2017013074 Customer: Widener & Associates 1902 120th Place SouthEast Suite 202 Everett, WA 98208, United States

Model Number	CAL200		Procedure Number	D0001.8386		
Serial Number	4920		Technician	Technician Scott Montgor		nery
Test Results	Pass		Calibration Date	14 De	c 2017	
Initial Condition	As Rece	ived	Calibration Due	14 De	c 2018	
	A3 Nece	aved	Temperature	22	°C	± 0.3 °C
Description	Larson [Davis CAL200 Acoustic Calibrator	Humidity	32	%RH	± 3 %RH
			Static Pressure	101.0	kPa	±1kPa
Evaluation Metho	d	The data is aquired by the insert voltage of circuit sensitivity. Data reported in dB re 2	alibration method using the 0 µPa.	e refere	nce mic	rophone's open
Compliance Stand	dards	Compliant to Manufacturer Specifications IEC 60942:2003	per D0001.8190 and the fe ANSI S1.40-2006	ollowing	ı standa	ırds:

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ in the uncertainties column do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

Standards Used							
Description	Cal Date	Cal Due	Cal Standard				
Agilent 34401A DMM	09/06/2017	09/06/2018	001021				
Larson Davis Model 2900 Real Time Analyzer	04/10/2017	04/10/2018	001051				
Microphone Calibration System	08/08/2017	08/08/2018	005446				
1/2" Preamplifier	10/05/2017	10/05/2018	006506				
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/08/2017	08/08/2018	006507				
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510				
Pressure Transducer	06/01/2017	06/01/2018	007310				

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2017013074 Output Level

Nominal Level [dB]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
94	101.0	94.14	93.80	94.20	0.14	Pass
114	101.4	114.12	113.80	114.20	0.13	Pass

-- End of measurement results--

Frequency

Nominal Level [dB]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
94	101.0	1,000.16	990.00	1,010.00	0.20	Pass
114	101.4	1,000.13	990.00	1,010.00	0.20	Pass

-- End of measurement results--

Total Harmonic Distortion + Noise (THD+N)

Nominal Level	Pressure	Test Result	Lower limit	Upper limit	Expanded Uncertainty	D
[dB]	[kPa] [%]		[%]	[%]	[%]	Result
94	101.0	0.52	0.00	2.00	0.25	Pass
114	101.4	0.54	0.00	2.00	0.25	Pass

-- End of measurement results--

Level Change Over Pressure

Tested at: 114 dB, 22 °C, 35 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [dB]	Lower limit [dB]	Upper limit [dB]	Expanded Uncertainty [dB]	Result
101.3	101.0	0.00	-0.30	0.30	0.04 ‡	Pass
108.0	107.6	0.02	-0.30	0.30	0.04 ‡	Pass
92.0	92.0	-0.03	-0.30	0.30	0.04 ‡	Pass
83.0	82.9	-0.05	-0.30	0.30	0.04 ‡	Pass
74.0	74.1	-0.05	-0.30	0.30	0.04 ‡	Pass
65.0	65.0	-0.02	-0.30	0.30	0.04 ‡	Pass

-- End of measurement results--

Frequency Change Over Pressure

Tested at: 114 dB, 22 °C, 35 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Expanded Uncertainty [Hz]	Result
101.3	101.0	0.00	-10.00	10.00	0.20 ‡	Pass
92.0	92.0	0.00	-10.00	10.00	0.20 ‡	Pass
108.0	107.6	0.01	-10.00	10.00	0.20 ‡	Pass
83.0	82.9	0.00	-10.00	10.00	0.20 ‡	Pass
74.0	74.1	-0.01	-10.00	10.00	0.20 ‡	Pass
65.0	65.0	-0.01	-10.00	10.00	0.20 ‡	Pass

-- End of measurement results--

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

12/14/2017 10:35:46AM

Certificate Number 2017013074 Total Harmonic Distortion + Noise (THD+N) Over Pressure

Tested at: 114 dB, 22 °C, 35 %RH

Nominal Pressure [kPa]	Pressure [kPa]	Test Result [%]	Lower limit [%]	Upper limit [%]	Expanded Uncertainty [%]	Result
74.0	74.1	0.50	0.00	2.00	0.25 ‡	Pass
65.0	65.0	0.50	0.00	2.00	0.25 ‡	Pass
108.0	107.6	0.54	0.00	2.00	0.25 ‡	Pass
101.3	101.0	0.53	0.00	2.00	0.25 ‡	Pass
92.0	92.0	0.52	0.00	2.00	0.25 ±	Pass
83.0	82.9	0.51	0.00	2.00	0.25 ‡	Pass

-- End of measurement results--

Signatory: _Scott Montgomery

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Calibration Certificate Certificate Number 2017013350

Customer: Widener & Associates 1902 120th Place SouthEast Suite 202 Everett, WA 98208, United States

Model Number Serial Number	2560 3513	Procedure Number Technician	er D0001.8387 Abraham Ortega		а
Test Results	Pass	Calibration Date	20 Dec :	2017	
Initial Condition	As Manufactured	Calibration Due	20 Dec 2018		
		Temperature	23.9	°C	± 0.01 °C
Description	1/2 inch Microphone - RI - 200V	Humidity	34.3	%RH	± 0.5 %RH
		Static Pressure	101.53	kPa	± 0.03 kPa
Evaluation Method	Tested electrically using an electrostatic actu	ator.			

Compliance Standards Compliant to Manufacturer Specifications.

Issuing lab certifies that the instrument described above meets or exceeds all specifications as stated in the referenced procedure (unless otherwise noted). It has been calibrated using measurement standards traceable to the SI through the National Institute of Standards and Technology (NIST), or other national measurement institutes, and meets the requirements of ISO/IEC 17025:2005. Test points marked with a ‡ do not fall within this laboratory's scope of accreditation.

The quality system is registered to ISO 9001:2008.

This calibration is a direct comparison of the unit under test to the listed reference standards and did not involve any sampling plans to complete. No allowance has been made for the instability of the test device due to use, time, etc. Such allowances would be made by the customer as needed.

The uncertainties were computed in accordance with the ISO Guide to the Expression of Uncertainty in Measurement (GUM). A coverage factor of approximately 2 sigma (k=2) has been applied to the standard uncertainty to express the expanded uncertainty at approximately 95% confidence level.

This report may not be reproduced, except in full, unless permission for the publication of an approved abstract is obtained in writing from the organization issuing this report.

	Standards Used	1	
Description	Cal Date	Cal Due	Cal Standard
Larson Davis Model 2900 Real Time Analyzer	07/17/2017	07/17/2018	001230
Microphone Calibration System	08/30/2017	08/30/2018	001233
1/2" Preamplifier	12/14/2017	12/14/2018	001274
Agilent 34401A DMM	12/07/2017	12/07/2018	001329
Larson Davis CAL250 Acoustic Calibrator	01/04/2017	01/04/2018	003030
1/2" Preamplifier	04/12/2017	04/12/2018	006506
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006507
1/2 inch Microphone - RI - 200V	04/24/2017	04/24/2018	006510
1/2 inch Microphone - RI - 200V	08/09/2017	08/09/2018	006519
Larson Davis 1/2" Preamplifier 7-pin LEMO	09/12/2017	09/12/2018	006530
Larson Davis 1/2" Preamplifier 7-pin LEMO	08/11/2017	08/11/2018	006531
rson Davis, a division of PCB Piezotronics, Inc	- Maladala	-	ALADEANDA
81 West 820 North			W ARSONDA
ovo, UT 84601, United States	Hac-MRA		
6-684-0001	The deladation	ACCREDITED Cert #3622.01	A PCB PIEZOTRONIC

Certificate Number 2017013350 Sensitivity

Measurement	Test Result [mV/Pa]	Lower limit [mV/Pa]	Upper limit [mV/Pa]	Expanded Uncertainty [mV/Pa]	Result	
Open Circuit Sensitivity	47.83	39,81	51.29	1.00	Pass	

-- End of measurement results--

Capacitance

Measurement	Test Result [pF]	
Capacitance	21.00	‡
	F	

-- End of measurement results--

Lower Limiting Frequency

Measurement	Test Result [Hz]	Lower limit [Hz]	Upper limit [Hz]	Result
-3 dB Frequency	1.21	1.00	2.00	Pass ‡

-- End of measurement results--

Data is normalized for 0 dB @ 251,19 Hz.

Frequency [Hz]	Actuator [dB]	Random [dB]	Lower limit [dB]	Upper limit [dB]	Result
19.95	-0,03	-0.03	-0.50	0.50	Pass ‡
25,12	0.00	0.00	-0.50	0.50	Pass ‡
31,62	0.01	0.01	-0.50	0.50	Pass ‡
39,81	0.02	0.02	-0.50	0.50	Pass ‡
50.12	0,02	0.02	-0.50	0,50	Pass ‡
63,10	0.02	0.02	-0.50	0.50	Pass ‡
79,43	0.02	0.02	-0.50	0.50	Pass ‡
100,00	0.01	0.01	-0.50	0.50	Pass ‡
125,89	0.01	0.01	-0.50	0.50	Pass ‡
158,49	0.01	0.01	-0.50	0.50	Pass ‡
199,53	0.00	0.00	-0.50	0.50	Pass ‡

Larson Davis, a division of PCB Piezotronics, Inc 1681 West 820 North Provo, UT 84601, United States 716-684-0001

Certificate Number 2017013350

Frequency [Hz]	Actuator [dB]	Random [dB]	Lower limit [dB]	Upper limit [dB]	Result
251.19	0.00	0.00	-0.50	0.50	Pass ‡
316.23	0.00	0.00	-0.50	0.50	Pass ‡
398,11	-0.01	-0.01	-0.50	0.50	Pass ‡
501.19	-0.01	-0.01	-0.50	0.50	Pass ‡
630.96	-0.01	-0.01	-0.50	0.50	Pass ‡
794.33	-0.02	-0,02	-0.50	0.50	Pass ±
1,000.00	-0.01	-0.01	-0.50	0.50	Pass ‡
1,059.25	-0.01	-0.01	-0.50	0.50	Pass ‡
1,122.02	-0.01	-0.01	-0.50	0.50	Pass ±
1,188.50	-0.01	-0.01	-0.50	0.50	Pass ±
1,258.93	-0.01	0.00	-0.50	0.50	Pass ±
1,333,52	-0.01	0.00	-0.50	0.50	Pass ±
1,412.54	-0.01	0.00	-0.50	0.50	Pass ±
1,496.24	-0.01	0.00	-0.50	0.50	Pass ±
1,584.89	-0.01	0.00	-0.50	0.50	Pass ±
1,678.80	0.00	0.01	-0.50	0.50	Pass ±
1,778.28	0.01	0.02	-0.50	0.50	Pass ±
1,883.65	0.01	0.02	-0.50	0.50	Pass ±
1,995.26	0.01	0.02	-0.50	0.50	Pass ±
2,113,49	0.02	0.04	-0.50	0.50	Pass ±
2,238.72	0.03	0.05	-0.50	0.50	Pass t
2,371.37	0.04	0.06	-0.50	0.50	Pass ±
2.511.89	0.05	0.08	-0.50	0.50	Pass t
2,660,73	0.07	0.11	-0.50	0.50	Pass t
2,818.38	0.03	0.08	-0.50	0.50	Pass t
2,985.38	0.05	0.12	-0.50	0.50	Pass t
3,162,28	0.07	0.15	-0.50	0.50	Pass t
3,349,65	0.09	0.19	-0.50	0.50	Pass t
3,548,13	0.10	0.22	-0.50	0.50	Pass t
3,758,37	0.11	0.25	-0.50	0.50	Pass t
3,981,07	0.13	0.29	-0.50	0.50	Pass t
4,216,97	0.15	0.34	-0.63	0.63	Pass t
4,466,84	0.16	0.39	-0.75	0.75	Pass t
4,731,51	0.18	0.45	-0.88	0.88	Pass †
5.011.87	0.19	0.49	-1.00	1.00	Pass t
5,308,84	0.21	0.52	-1.00	1.00	Pass t
5.623.41	0.22	0.53	-1.00	1.00	Pass t
5,956,62	0.22	0.51	-1.00	1.00	Pass t
6.309.57	0.21	0.46	-1.00	1.00	Pass t
6,683,44	0.19	0.40	-1.25	1.00	Pass t
7,079,46	0.13	0.31	-1.50	1.00	Pass t
7,498,94	0.06	0.20	-1 75	1.00	Pass t
7,943,28	-0.07	0.03	-2.00	1.00	Pass t
8,413,95	-0.26	-0.17	-2.00	1.00	Pass t
8,912,51	-0.51	-0.44	-2.00	1.00	Pass t
9,440,61	-0.95	-0.89	-2.00	1.00	Pass t
10.000.00	-1.51	-1.43	-2.00	1-00	Pass t
10,592.54	-2.07	-1.98	-2,00	1.00	Pass t
11,220,19	-2.79	-2.66		1-00	Pass t
11,885.02	-3.39	-3.22		1.00	Pass t
12.589.25	-3.99	-3.77		1.00	Pass t
13,335.21	-4.63	-4.37		1.00	Pass t
14,125.38	-5.22	-4.97		1.00	Pass ±

Certificate Number 2017013350

Frequency [Hz]	Actuator [dB]	Random [dB]	Lower limit [dB]	Upper limit [dB]	Result
14,962,36	-6.05	-5.84		1.00	Pass ‡
15,848,93	-6.97	-6.81		1.00	Pass ‡
16,788,04	-8.00	-7.88		1.00	Pass ‡
17,782.80	-9.03	-8.92		1.00	Pass ‡
18,836,49	-9.68	-9.57		1.00	Pass ±
19,952.62	-10,70	-10.62		1.00	Pass ‡
		End of meas	urement results		

Signatory: Abraham Ortega

Larson Davis, a division of PCB Piezotronics, Inc
1681 West 820 North
Provo, UT 84601, United States
716-684-0001

12/20/2017 12:27 35PM

This page intentionally left blank for printing purposes.

		Existing		Sheet 1 c	of 1	28 Mar 2018
				Widener	and Associat	es
		Plan View		Project/C	contract No. S	Strander Blvd
		Run name: Existing		TNM Ver	sion 2.5, Feb	2004
		Scale:	500 fi	eet Analysis	By:	
		Roadway: —	\uparrow	Ground 2	Zone: poly	ygon
		Receiver:		Tree Zon	ie: das	shed polygon
		Barrier:	\uparrow	Contour	Zone: pol	ygon
		Building Row: —		Parallel E	3arrier:	
		Terrain Line: —		Skew Se	ction:	\uparrow
	_					
_	_	_	_			
1292000	1292500	1293000	1293500 1294	000	294500	1295000

Existing Conditions

	Total	Heavy Trucks	Med Trucks	Cars
27th ST WB	180	9	16	155
27th ST EB	455	18	41	396
		0	0	0
Strander WB 3	315	16	28	271
Strander EB 3	361	14	32	314
Strander WB 2	51	3	5	44
Strander EB 2	61	2	5	53
Strander WB 1	712	7	43	662
Strander EB 1	697	77	42	579
W Valley Hwy NB 1	1413	57	99	1258
W Valley Hwy SB 1	1424	57	71	1296
W Valley Hwy NB 2	1273	64	102	1108
W Valley Hwy SB 2	1018	41	92	886

28 Mar 2018 ssociates 5, Feb 2004 polygon polygon polygon	1294000
Sheet 1 of 1 Sheet 1 of 1 Widener and As Project/Contrac TNM Version 2. Ground Zone: Tree Zone: Tree Zone: Parallel Barrier: Skew Section:	1293500
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1293000
No Build 204 Plan View Run name: N Scale: Receiver: Barrier: Building Row Terrain Line:	1292500
·	1292000
Υ	1291500
	1291000
	<u>+</u>

•

No Build 2040

	Total	Heavy Trucks	Med Trucks	Cars
27th ST WB	240	12	22	206
27th ST EB	630	25	57	548
		0	0	0
Strander WB 3	410	21	37	353
Strander EB 3	395	16	36	344
Strander WB 2	80	4	7	69
Strander EB 2	90	4	8	78
Strander WB 1	950	10	57	884
Strander EB 1	1030	113	62	855
W Valley Hwy NB 1	1820	73	127	1620
W Valley Hwy SB 1	1700	68	85	1547
W Valley Hwy NB 2	1710	86	137	1488
W Valley Hwy SB 2	1660	66	149	1444

. Sheet 1 of 1 28 Mar 2018 Sheet 1 of 1 28 Mar 2018 Widener and Associates Widener and Associates Project/Contract No. Strander Blvd TNM Version 2.5, Feb 2004 TNM Version 2.5, Feb 2004 TNM Version 2.5, Feb 2004 Tree Zone: polygon Tree Zone: polygon Skew Section:	1293500 1294000
Build 2040 Build 2040 Plan View Run name: Build 2040 Scale:	1292500 1293000
	1292000
	1291500
	1291000

Build 2040

	Total	Heavy Trucks	Med Trucks	Cars
27th ST WB	760	38	68	654
27th ST EB	1230	49	111	1070
		0	0	0
Strander WB 3	1080	54	97	929
Strander EB 3	1120	45	101	974
Tukwila Access NB	40	2	4	35
Tukwila Access SB	370	15	33	322
Strander WB 2	1230	62	111	1058
Strander EB 2	930	37	84	809
Strander WB 1	1390	14	83	1293
Strander EB 1	1290	142	77	1071
W Valley Hwy NB 1	2160	86	151	1922
W Valley Hwy SB 1	1830	73	92	1665
W Valley Hwy NB 2	1670	84	134	1453
W Valley Hwy SB 2	1540	62	139	1340

This page intentionally left blank for printing purposes.

Sound Level Data Collection Sheet

DATE/TIME: 12-30-17 2:43	PLOCATION: East of Tracks by Karser	
PROJECT NO.:	PERSONNEL: Jordon Widener	
SITE:	WIND SPEED: Ave 6 Heh 11 WIND. DIR: North Eas	+
REL. HUMIDITY: 41	TEMP: Dry Bulb 49 Wet Bulb 49	

EQUIPMENT MODEL:	SERIAL NO.:
CALIBRATION:	PROBLEMS:
Initial Final	
DESCRIPTOR:	INTEGRATION RATE:
WEIGHTING:	SAMPLE RATE:

SITE DESCRIPTION / DRAWING:
See Photos
SOUND LEVEL 1: LEO 61.8 SOUND LEVEL 2:
NOTES
@ Co. 42 min heliscoter fra over
19 5.03 min plane tlew over
@ 13:02 min - Plane flew over
97:46 to 12:10 - trieght Train

Heavy Trucks	Direction of Traffi	Site Number: Direction of Traffi Heavy Trucks	The free Country
Medium Trucks	c: West	Timing Number	
Cars		LEQ 61.8 MA	
 Bus		Temp:(Wind S	
Bikes		Bikes	
Timed Cars	Distance for Timed Cars $(5 - 15 ft)$	Relative Humidity: 41 Wind Direction: NE Distance for Timed Cars(15 - 30ff) Timed Cars	

Same

Facing South

Facing West

Sound Level Data Collection Sheet

1. N.

DATE/TIME: 2-30-17 1:45	LOCATION: South, of	Jack in the BOX
PROJECT NO.:	PERSONNEL: Jordan	Widener
SITE: Strander Ave.	WIND SPEED: 👩	WIND. DIR: N/A
REL. HUMIDITY: 41	TEMP: Dry Bulb 49	Wet Bulb 49

EQUIPMENT MODEL:	SERIAL NO.:
CALIBRATION:	PROBLEMS:
Initial Final	
DESCRIPTOR:	INTEGRATION RATE:
WEIGHTING:	SAMPLE RATE:

SITE DESCRIPTION / DRAWING:	
see photos	
L. L.	
SOUND LEVEL 1: LEQ 71.4	SOUND LEVEL 2:

NOTES: Helicopter	flew over @ 12:05	min
	X	

LEQ 71.4

4 . · · W .

8 8 4 - 5

Facing West

Facing South

Facing North