Loading...
The URL can be used to link to this page
Your browser does not support the video tag.
Home
My WebLink
About
Permit D14-0045 - WORKPOINTE - STORAGE RACKS
WORKPOINTE 520 ANDOVER PARK W D14-0045 City of Tukwila Department of Community Development 6300 Southcenter Boulevard, Suite #100 Tukwila, Washington 98188 Phone: 206-431-3670 Inspection Request Line: 206-438-9350 Web site: htta://www.TukwilaWA.Rov DEVELOPMENT PERMIT Parcel No: 2623049015 Permit Number: D14-0045 Address: 520 ANDOVER PARK W Issue Date: 2/20/2014 Permit Expires On: 8/19/2014 Project Name: WORKPOINTE Owner: Name: ROFFE & ASSOCIATES Address: 415 BAKER BLVD #200 C/O THE MADISON COMPANY, TUKWILLA, WA, 98188 Contact Person: Name: MIKE WISNIEWSKI Address: 9877 40 AVE S , SEATTLE, WA, 98118 Contractor: Name: DIVERSIFICATION INC Address: 9877 40 AVE S , SEATTLE, WA, 98118 License No: DIVERI*999BP Lender: Name: N/A Address: ,,, Phone: (206) 402-2856 Phone: (206) 763-4030 Expiration Date: DESCRIPTION OF WORK: MOVED WAREHOUSES AND PALLET RACKING TO THIS LOCATION. INSTALL (1) ROW OF PALLET RACKING. Project Valuation: $2,400.00 Type of Fire Protection: Sprinklers: Fire Alarm: Fees Collected: $257.98 Type of Construction: Occupancy per IBC: Electrical Service Provided by: TUKWILA FIRE SERVICE Water District: TUKWILA Sewer District: TUKWILA SEWER SERVICE Current Codes adopted by the City of Tukwila: Internations Building Code Edition: International Residential Code Edition: International Mechanical Code Edition: Uniform Plumbing Code Edition: 2012 International Fuel Gas Code: 2012 WA Cities Electrical Code: 2012 WA State Energy Code: 2012 2012 2012 2012 Public Works Activities: Channelization/Striping: Curb Cut/Access/Sidewalk: Fire Loop Hydrant: Flood Control Zone: Hauling/Oversize Load: Land Altering: Landscape Irrigation: Sanitary Side Sewer: Sewer Main Extension: Storm Drainage: Street Use: Water Main Extension: Water Meter: Volumes: Cut: 0 Fill: 0 Number: 0 No Permit Center Authorized Signature: I hearby certify that I have read and provisions of law and ordinances go exami rning Date: 0 To\11-\ d this permit and know the same to be true and correct. All his work will be complied with, whether specified herein or not. The granting of this permit does not presume to give authority to violate or cancel the provisions of any other state or local laws regulating construction or the performance of work. I am authorized to sign and obtain this development permit and agree to the conditions attached to this permit. Signature: Print Name: Date: 772d/Y This permit shall become null and void if the work is not commenced within 180 days for the date of issuance, or if the work is suspended or abandoned for a period of 180 days from the last inspection. PERMIT CONDITIONS: 1: Portable fire extinguishers, not housed in cabinets, shall be installed on the hangers or brackets supplied. Hangers or brackets shall be securely anchored to the mounting surface in accordance with the manufacturer's installation instructions. Portable fire extinguishers having a gross weight not exceeding 40 pounds (18 kg) shall be installed so that its top is not more than 5 feet (1524 mm) above the floor. Hand-held portable fire extinguishers having a gross weight exceeding 40 pounds (18 kg) shall be installed so that its top is not more than 3.5 feet (1067 mm) above the floor. The clearance between the floor and the bottom of the installed hand-held extinguishers shall not be less than 4 inches (102 mm). (IFC 906.7 and IFC 906.9) 2: Extinguishers shall be located in conspicuous locations where they will be readily accessible and immediately available for use. These locations shall be along normal paths of travel, unless the fire code official determines that the hazard posed indicates the need for placement away from normal paths of travel. (IFC 906.5) 3: Fire extinguishers require monthly and yearly inspections. They must have a tag or label securely attached that indicates the month and year that the inspection was performed and shall identify the company or person performing the service. Every six years stored pressure extinguishers shall be emptied and subjected to the applicable recharge procedures. If the required monthly and yearly inspections of the fire extinguisher(s) are not accomplished or the inspection tag is not completed, a reputable fire extinguisher service company will be required to conduct these required surveys. (NFPA 10, 4-3, 4-4) 4: The total number of fire extinguishers required for an ordinary hazard occupancy with Class A fire hazards is calculated at one extinguisher for each 1,500 sq. ft. of area. The extinguisher(s) should be of the "All Purpose" (2A, 20B:C) dry chemical type. Travel distance to any fire extinguisher must be 75' or less. (IFC 906.3) (NFPA 10, 3-2.1) 5: All new fire alarm systems or modifications to existing systems shall have the written approval of The Tukwila Fire Prevention Bureau. No work shall commence until a fire department permit has been obtained. (City Ordinance #2328) (IFC 104.2) 6: Maintain fire alarm system audible/visual notification. Addition/relocation of walls or partitions may require relocation and/or addition of audible/visual notification devices. (City Ordinance #2328) 7: Clearance between ignition sources, such as Tight fixtures, heaters and flame -producing devices, and combustible materials shall be maintained in an approved manner. (IFC 305.1) 8: Where storage height exceeds 15 feet and ceiling sprinklers only are installed, fire protection by one of the following methods is required for steel building columns located within racks: (a) one -hour fire proofing, (b) sidewall sprinkler at the 15 foot elevation of the column, (c) ceiling sprinkler density minimums as determined by the Tukwila Fire Prevention Bureau. (NFPA 13) 9: Storage shall be maintained 2 feet or more below the ceiling in nonsprinklered areas of buildings or a minimum of 18 inches below sprinkler head deflectors in sprinklered areas of buildings. (IFC 315.2.1) 10: Flue spaces shall be provided in accordance with International Fire Code Table 2308.3. Required flue spaces shall be maintained. 11: Any overlooked hazardous condition and/or violation of the adopted Fire or Building Codes does not imply approval of such condition or violation. 12: These plans were reviewed by Inspector 511. If you have any questions, please call Tukwila Fire Prevention Bureau at (206)575-4407. 13: ***BUILDING PERMIT CONDITIONS*** 14: Work shall be installed in accordance with the approved construction documents, and any changes made during construction that are not in accordance with the approved construction documents shall be resubmitted for approval. 15: All permits, inspection record card and approved construction documents shall be kept at the site of work and shall be open to inspection by the Building Inspector until final inspection approval is granted. 16: All construction shall be done in conformance with the Washington State Building Code and the Washington State Energy Code. 17: VALIDITY OF PERMIT: The issuance or granting of a permit shall not be construed to be a permit for, or an approval of, any violation of any of the provisions of the building code or of any other ordinances of the City of Tukwila. Permits presuming to give authority to violate or cancel the provisions of the code or other ordinances of the City of Tukwila shall not be valid. The issuance of a permit based on construction documents and other data shall not prevent the Building Official from requiring the correction of errors in the construction documents and other data. PERMIT INSPECTIONS REQUIRED Permit Inspection Line: (206) 438-9350 1700 BUILDING FINAL** 1400 FIRE FINAL 4046 SI-EPDXY/EXP CONC Tenant Name: CITY OF TUKWILA Community Development Department Public Works Department Permit Center 6300 Southcenter Blvd, Suite 100 Tukwila, WA 98188 http://www.TukwilaWA.gov CONSTRUCTION PERMIT APPLICATION Applications and plans must be complete in order to be accepted for plan review. Applications will not be accepted through the mail or by fax. **Please Print** sa O Ahd0V�r P4rh �� t King Co Assessor's Tax No.: (Oz �0 i{ 10 it Site Address: S Suite Number: Floor: 1- New Tenant: g Yes ❑ ..No Work pa/hie Name: fira-C6 / I SfOci'gTP 5 Address: 0 Hovel( 571 City: 5641//c State: wa Zip: cr poi Name: l ' l<� "V i5t'!ic°tv.5 Address: q 8 77 Cf 0/4 Ave s City: �/c State: IA Zip:t!rI'' Phone: 7 064 D,2. Wax: Email: ISM @ taA po/trfe,. cow, RA A`F ©N Company Name: Ware 0.n ./ Address: a ff 77 L (J1ti Ave,j c. U City: c•q ff/e State: Wq Zip: l el ( 0 Phone: 106_ /�' ((0 3UFax: Contr Reg No.:000I VERAI`6pis Exp Date: 1/')/2oIS Tukwila Business License No.: 505 - alci 52.i0 H:\Applications\Forms-Applications On Line \2011 Applications\Permit Application Revised - 8-9-11.docx Revised: August 2011 bh ARC Company Name: Architect Name: N/A Address: City: State: Zip: Phone: Fax: Email: ENGINEER OF WORD Company Name: AST Qyh eer In y Engineer Name: (he seI/e J 7C,r lc Address:, LI gC �i-I ,s l v 67r� te:i it, Dr. 5.4. NV / City: t)Ca ve y l State: a Zip: " 17 95 Phone: 5-0)-62t ' )o)0 Fax: 50)- Do. ,5- q Email: c s !ar ©AAievtg-. Gom Name: Address: ti City: State: Zip: Page 1 of 4 • rifiltitiOW :T FORMATION — 206-431-3670 Valuation of Project (contractor's bid price): $ 2 ((Oa Describe the scope of work (please provide detailed information): MO"COl heave 4- pgll'eT va64,�ay To 1N:s 7%e (I) tow 07C Mitte4 v4C 1C,'hy. Will there be new rack storage? ❑ Yes Existing Building Valuation: $ Ipcctri0rl, 6, 41,4 1'5 ?'e 1011010 ❑.. No If yes, a separate permit and plan submittal will be required. All Banding Areas in Square Footage Below Existing Interior .Remodel Addition to Existing Structure New Type of Construction per IBC Type o O panty per IBC y r- % PLANNING DIVISION: Single family building footprint (area of the foundation of all structures, plus any decks over 18 inches and overhangs greater than 18 inches) *For an Accessory dwelling, provide the following: Lot Area (sq ft): Floor area of principal dwelling: Floor area of accessory dwelling: *Provide documentation that shows that the principal owner lives in one of the dwellings as his or her primary residence. Number of Parking Stalls Provided: Standard: Compact: Handicap: Will there be a change in use? ❑ Yes 0 No If "yes", explain: FIRE PROTECTION/HAZARDOUS MATERIALS: ❑ Sprinklers ❑ Automatic Fire Alarm El None 0 Other (specify) Will there be storage or use of flammable, combustible or hazardous materials in the building? ❑ Yes ® No If `yes', attach list of materials and storage locations on a separate 8-1/2" x 11 " paper including quantities and Material Safety Data Sheets. SEPTIC SYSTEM O On -site Septic System — For on -site septic system, provide 2 copies of a current septic design approved by King County Health Department. H:\Applications\Forms-Applications On Line\2011 Applications\Permit Application Revised - 8-9-1 Ldocx Revised: August 2011 bh Page 2 of 4 • OTES Value of Construction — In all cases, a value of construction amount should be entered by the applicant. This figure will be reviewed and is subject to possible revision by the Permit Center to comply with current fee schedules. Expiration of Plan Review — Applications for which no permit is issued within 180 days following the date of application shall expire by limitation. The Building Official may grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be requested in writing and justifiable cause demonstrated. Section 105.3.2 International Building Code (current edition). I HEREBY CERTIFY THAT I HAVE READ AND EXAMINED THIS APPLICATION AND KNOW THE SAME TO BE TRUE UNDER PENALTY OF PERJURY BY THE LAWS OF THE STATE OF WASHINGTON, AND I AM AUTHORIZED TO APPLY FOR THIS PERMIT. BUILDING OWNER O//4HORIZED AGiENT: Signature: _ / Date: Print Name: / t � li C VV r 511(Z' w51(rc Day Telephone: Mailing Address: - ( 5 7 7 'Itd 14 /T Ve 7. 5ed fie l✓U 9 Vc12 City State Zip H:\Applications\Forns-Applications On Line \2011 Applications \Pern it Application Revised - 8-9-I1.docx Revised: August 2011 bh Page 4 of 4 0 Cash Register Receipt City of Tukwila DESCRIPTIONS ACCOUNT QUANTITY PAID PermitTRAK D14:-0045 Add,r'r S: DEVELOPMENT $250.52 PERMIT FEE PLAN CHECK FEE WASHINGTON STATE SURCHARGE R000.322.100.00.00 R000.345.830.00.00 B640.237.114 $149.10 $96.92 $4.50 TECHNOLOGY FEE $7.46 TECHNOLOGY FEE TOTAL FEES PAID BY RECEIPT: R1053 R000.322.900.04.00 $7.46 $257.98 Date Paid: Monday, February 03, 2014 Paid By: WORKPOINTE Pay Method: CREDIT CARD 078643 Printed: Monday, February 03, 2014 3:49 PM 1 of 1 SYSTEMS PERMIT N0. CITY OF TUKWILA BUILDING DIVISION 6300 Southcenter Blvd., #100, Tukwila. WA 98188 (206) 431-3670 ! . Permit Inspection Request Line (206) 431-2451 P ec . POI 'type spe lion:. a v OR Ad INSPECTION RECORD. Retain a copy with permit Gate Ca led: t r. 6 I7.3 Date W tted: lct C Requester: Phone No: p.m. Approved per applicable codes. a Corrections required prior to approval. COMMENTS: Tr- apt.eTe REINSPECfION FEE RI VIREO. to next inspection. tee must be paid at 6300. Southcenter Blvd..: Suite 1-00. Call to schedule reinspection. INSPECTION RECORD Retain a copy with permit INSPECTION NUMBER PERMIT NUMBERS CITY OF TUKWILA FIRE DEPARTMENT 444 Andover Park East, Tukwila, Wa. 98188 206-575-4407 Project: Wortrv-e Type of Inspection"1Z r lL fir, Address: Suite #:lam Contact Person: Special Instructions: Phone No.: Approved per applicable codes. COMMENTS: Corrections required prior to approval. Needs Shift Inspection: Sprinklers: Fire Alarm: Hood & Duct: Monitor: Pre -Fire: Permits: Occupancy Type: Inspector: , '53 - Date: a Hrs.: /, c) $100.00 REINSPECTION FEE REQUIRED. You will receive an invoice from the City of Tukwila Finance Department. Call to schedule a reinspection. Billing Address Attn: -Address: -OW Word/Inspection Record Form.Doc Company Name: State: 6/11/10 Zip: T.F.D. Form F.P. 113 16' f 12' TYPICAL ELEVATION 1 4'-8' l 1 4'-8' 4'-8' i 16' SPECIAL INSPECTION FOR STORAGE RACKS (OVER 8 FEET) Periodic special inspection is required during the anchorage of access floors and storage racks 8 feet or greater in height in structures assigned to Seismic Design Category D, E or F. IBC 1707.5 and TABLE 1704.4 (4) Inspection of anchors installed in hardened concrete. S orkpoi nte M�work Southcenter Warehouse 198' 3' 6' 1'_ 67'-11i' SEPARATE PERMIT ,CUIRED FOR: lirMethanical artiecWag grriumbim IUMas Piping of Tukwila E� wir DIVISION 1r-B' 16'-6' rNREVISIONS o changes shall be made to the scope of I'"vk without prior approval of ` s.pa Building Division. will require a new plan submittal i m 4 i7;;;11de additional plan review fees. 166'10' REVIEWED FOR CODE COMPLIANCE APPROVED FEB 13 2014 kr 144 City of Tukwila BUILDING DIVISION F L( L Permit Pio. 114' QQJ PiPn wview approval is subject to errors and omissions. of construction documents does not authorize of any adopted code or ordlnance. Receipt vi.iroved F d Cippy and ©ondltions is alkmovAedged: rfid. 2/ o/2a/y By Date: City Of Tukwila BUILDING DIVISION D11-1-.0045 24 -5' 60'-1 4 RECEIVED CITY OF TUKWIL FEB 0 3 2014 PERMIT CENTER AAI On associates, i.e. ENGINEERING January 28, 2014 Mr. Mike Wisniewski Workpointe 9877 40Ih Ave S Seattle, WA 98118 RE: Workpointe — Warehouse Pallet Rack Project No. A14011 Dear Mike: FILE COPY REVIEWED FOR CODE COMPLIANCE APPROVED FEB 13 2014 City of Tukwila BUILDING DIVISION As requested, we have reviewed the pallet rack strength, designed the anchorage,'and checked the existing slab -on - grade for seismic loads from the proposed shelving to be located in Tukwila, Washington. The seismic forces were calculated in accordance with Section 15.5.3 of the ASCE 7-10 as referenced by the 2012 IBC and the 2012 Washington State Building Code. The design parameters included the following items: SOS = 0.96g, Ip = 1.0, Site Class D and Seismic Design Category D. Additional information provided by Workpointe included the shelving system loads, elevations, layout, component details, and floor structure. The strength and seismic anchorage for the installation outlined in the attached document, D1, is structurally adequate provided the following requirements are satisfied: • The maximum product load per level shall be 1,200 Ibs, and this must be clearly posted. • The SteelKing pallet racking configuration shall be as shown on the attached drawing, D1, dated 1/27/14. • The racks shall be directly anchored to the concrete slab -on -grade with (4)'/z" diameter (2" embed) Hilti KB-TZ bolts through each footplate. • The lowermost beam to column connections shall be modified as shown on the attached sketch, SK1, dated 1/27/14. • Minimum thickness of the normal -weight concrete slab -on -grade is 6" and the compressive strength is at least 3000 psi. • Periodic special inspection is required for the concrete anchor installation and field welding. Substantiating calculations are attached. If there are any questions, please do not hesitate to call us. Sincerely, Chemelle Stark, PE Associate 4875 SW Griffith Drive ( Suite 300 I Beaverton, OR 197005 RECEIVED CITY OF TUKWILA FEB 0 3 2014 PERMIT CENTER ttL1OO4S 503.620.3030 tel 503.620.5539 I fax w w w. a a i e n g c o m ry FDi Fr /A U = 6o5%• Tyr- tnlo /t/. CfrUcul fDNS: !Zoo lb 1144-x 12,90 ,eb /t44 • 1 cff iron, e) tower. 1000!Lb 444xc • 6" 96171 ryp rd 311xvE' r'4w P.cr ry ix (-- tit /Z,—o'l 5eht Z'4r G/2s)) 5' 2" \. 12"A b "x &et re-p GVITN' (4) /// ") (2".efriiked) Ifit,r7 -r,! ryp. .-` 'N\ t'Ii CCpFC / 4-L- /N s-p T7 DN Dp CONG)e-E7E / tNCr //YcrAt t: /fir?bN /`ENV pig t /EZ 1 iNCt PE& a_ i/✓ ggpo1NrE g/-cg CoNfIG'1il2•777o/\ 42n ,t 46 41 If A, ' afghan associates, inc. ENGINEERING 4875 SW GriMth Drhre l Suite 300 I Beaverton, OR 197005 503.620,30301 tel 503.620.55391 fax www,aaieng.com Ale/? k Po Pil t r- ,?k CoFiGat/ By: AL. Date. Project No.: 4. 1 f Sheet: ____,_1__ of: -- PieoyEcr: Wo,e/'Po1Nr W Eltotis6 ?Mar Firr4 1p,FSr: 52o "PazieRPric wE5r rid K al/ t-+ t ✓i4- Zo / 2. 113c. / 7-10 A-ScF f 3/8-/) NRS /97 S t / PAT/ �'�7!/�?.✓ pm [ Er of f 1"7'''1/NCB /gyp pE•SIGN 47V C ttV .4'4 E Fog St�7 Sl" l / L, f /2e E S. C DPEs: Gums: PL per- Cpvfl- = 3 0 ¢oo_eh s pZ Dp Cf LzolY /412"x / 44"A 4 24 0118E47%-1S - 3 G t-Vez' S (2) Mp,G/-irr ' /36 i eft. 51-EZ4n N 4t ‘E7 71IL; 149.1t5061 �vNGIT�AF F /aa, 2535 5s = 1.¢45 S / = 1.4-45 Syr D.9' 3 D. 538 Cm i = 0.8"? S22/ O. 538 /2 = ¢ C u SE R- Bop AIp6c-n ary r) 7-n' (Fjeom , 1 S,4 /Iro PEz_) Cs= 1.2 GDi /,?(8.538) . 0o- /2-T" 4(,70¢)vi 12oe it,s S6. 5 (2)(3J - 33? a (/ 34) - a �-�- 3/47)3 = 3- e Si rE Crstss D - /9-.ra4/1 r&D C S (nh,tx) _ 2.5 (0, 4) Sos A 5(. ¢) (. 9b 3) 0 O-C/'-1/N)f 0./1-(5-Df)= 0./4(0.963)- 0./35 Fp = 0, 4 () b 3)Wp /(4/i. o) (/ f , %) Or 24- Air 4— . r AA I Ake associates, inc. t ENGINEERING 4875 SW Griffith Drive J Suite 3001 Beaverton. OR 197005 503.620.30301 tel 503.620 5539 I fax www.aaleng.com GvoPJJPoirvTE G✓/ FthySF Pfmt F7`/ZArcK It /Gnu 10 s. Z4/ By: ..-�.- Project No • Sheet: f Date 1/i ¢W14 of: 0 g" pexpbTL►'norvf 2.f0c. r ir• 4- /Yore: Fib vexiry 1 DC, 17o/Y of / v "Nate- ro riusr L2x#/e(xz) 171-ArIctpei,/D G„,'. 2.) ,C o Lr 17 ( 15"r) AI'D LE. $ 01To/ If ,B eiot,"i co,,N Fcr7 any T y p rop PorroP/l. (, /%7 725 ColA./'1/v CoN/YrCT7 bN rn- S//t'1 oNwJ oC - 0 0) S/ PE= AAI afghan associates. inc. ENGINEERING 4875 SW Griffith Drive i Suite 300 j Beaverton, OR 197005 503,820,3030 I tel 503 820.5539 ( fax www.aafeng.com A/og/c po71vrE P4-Li ET /24-< f3� CoJvNEcT7 oN PR,.. ByDateu/979¢ Project No 1 ( Q 1) Sheet: $K / Or: __ Design Maps Summary Report Page 1 of 1 EMS Design Maps Summary Report User -Specified Input Building Code Reference Document 2012 International Building Code (which utilizes USGS hazard data available in 2008) Site Coordinates 47.4509°N, 122.2535°W Site Soil Classification Site Class D - "Stiff Soil" Risk Category I/II/III USGS-Provided Output Ss= 1.445g S, = 0.538 g SMs = 1.445 g SM, = 0.807 g S5= 0.963g SO1 = 0.538 g For information on how the SS and SS values above have been calculated from probabilistic (risk -targeted) and deterministic ground motions in the direction of maximum horizontal response, please return to the application and select the "2009 NEHRP" building code reference document. MCER Response Spectrum 1.65 1.50 1,23 1.20 1.05 • 01 ▪ 0,75 0,60 0.45 0.30 0.15 0.00 t 1 1. I 1 1100 0.'0 0.40 0.60 0,00 1.00 1.20 1.40 1.60 1.93 2.00 Period, T (sec) 1.10 1.00 0.90 0 90 0 r0 p 60 0.4 0.10 020 0.10 0,00 0 00 G 20 0 40 0. 60 0, 90 1 00 1 20 1.40 1. 60 2.20 2.00 Design Response Spectrum Period. T (secs Although this for nl1'. cn is a product of the U.S. Geological Sui v 'v, we provide no warranty, expressed or implied, as to the accuracy of the data contained there(, too i5 not It su,YLtitute for achnici i Sij ject- ,att .r know'indge. htto://eeohazards.uszs.aov/desienmans/us/summarv.Dhu?temnlate=minimal&latitude=47.4... 1 / 15/2014 W7N4 Cotvp UAW./ DPI . STD. reltizPgif DpFN/wcs' f posr 4'MM'' &,'ok.4`; Po 5r sEcron /200 ................... . / 2oo °t. B Firm (&oi ;) 4-4 BFiiri S'Ec17wy 6oks; MAI -repelT,n 4' t 7w4 P/orr oiv4z_. 0174tF 1. /25 "o xi biot- AA! afghan associates, inc. ENGINEERING 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 197005 503420.3030 I tel 503 620.5539 I fax www.aaleng.com GODg 1 PD/t' TF P/tt tr lztr�c.. St��Ll1l NCB Con F1414 9-17sN By: JLe Date' 1 //4 /4" project Flo '[ 4 d// Sheet: 97 of: 59 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/15/2014 3:07:13 PM By: Chemelle Stark Full Section Properties Chemelle Stark AAI Engineering, Inc. Page 1 Area 1.1527 in^2 Wt. Ix Sx(t) Sx(b) Iy Sy(1) Sy(r) I1 I2 Ic Io 1.5950 1.0633 1.0633 1.5950 1.0633 1.0633 1.5950 1.5950 3.1900 3.1900 in^4 in^3 in^3 in^4 in"3 in^3 in^4 in^4 in^4 in^4 Net Section Properties rx y(t) y(b) Height ry x(1) x(r) Width rl r2 rc ro 0.0039191 k/ft Width 1.1763 in Ixy 1.5000 in a 1.5000 in 3.0000 in 1.1763 in Xo 1.5000 in Yo 1.5000 in jx 3.0000 in jy 1.1763 in 1.1763 in 1.6636 in Cw 1.6636 in J 11.334 in 0.0000 in^4 0.000 deg 0.0000 in 0.0000 in 0.0000 in 0.0000 in 0.0006 in^6 2.5208 in^4 Ix Sx(t) Sx(b) Iy Sy(1) Sy(r) 1.5664 1.0443 1.0442 in^4 in^3 in^3 1.2256 in^4 0.7121 in^3 0.9583 in^3 rx y(t) y(b) ry x(1) x(r) 1.2515 in 1.5000 in 1.5000 in 1.1070 in 1.7210 in 1.2790 in Area Ixy Ic 1.0001 in^2 0.0000 in^4 2.7920 in^4 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/15/2014 3:30:53 PM By: Chemelle Stark Full Section Properties Area 0.31354 in^2 Wt. Ix Sx(t) Sx(b) Iy Sy(1) Sy(r) I1 I2 Ic Io 0.05376 0.10753 0.10753 0.15714 0.15714 0.15714 0.15714 0.05376 0.21091 0.21091 in^4 rx in^3 y(t) in^3 y(b) Height in^4 ry in^3 x(1) in^3 x(r) Width in^4 ri in^4 r2 in/4 rc in/4 ro Page 1 Chemelle Stark MI Engineering, Inc. 0 0010660 k/ft Width 5.5396 in 0.4141 in Ixy 0.00000 in^4 0.5000 in a -90.000 deg 0.5000 in 1.0000 in 0.7079 in Xo 0.0000 in 1.0000 in Yo 0.0000 in 1.0000 in jx 0.0000 in 2.0000 in jy 0.0000 in 0.7079 in 0.4141 in 0.8202 in Cw 0.002734 in^6 0.8202 in J 0.13500 in^4 CFS Version 5.0.2 Section: Section 4.sct Cylindrical Tube 1.1250-16 Gage Rev. Date: 1/15/2014 3:31:49 PM By: Chemelle Stark Full Section Properties Chemelle Stark MI Engineering, Inc. Page 1 Area 0.18998 in^2 Wt. Ix Sx(t) Sx(b) Iy Sy(1) Sy(r) I1 I2 Ic Io 0.027183 in^4 0.048325 in^3 0.048325 in^3 0.027183 0.048325 0.048325 0.027183 0.027183 0.054366 0.054366 in^4 in"3 in"3 in^4 in^4 in^4 in^4 rx y(t) y(b) Height ry x (1) x (r) Width rl r2 rc ro 0.00064592 k/ft Width 3.3565 in 0.37827 in Ixy 0.000000 in^4 0.56250 in a 0.000 deg 0.56250 in 1.12500 in 0.37827 in Xo 0.00000 in 0.56250 in Yo 0.00000 in 0.56250 in jx 0.00000 in 1.12500 in jy 0.00000 in 0.37827 in 0.37827 in 0.53495 in Cw 0.000000 in^6 0.53495 in J 0.054214 in^4 b CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/15/2014 3:24:42 PM By: Chemelle Stark Full Section Properties Chemelle Stark AAI Engineering, Inc. Page 1 Area 1.1450 in^2 Wt. Ix 4.7173 in^4 rx Sx(t) 1.5382 in^3 y(t) Sx(b) 1.6483 in^3 y(b) Height Iy 1.1775 in^4 ry Sy(1) 0.9946 in^3 x(1) Sy(r) 0.8964 in^3 x(r) Width I1 4.7336 in^4 ri I2 1.1612 in^4 r2 Ic 5.8948 in^4 rc Io 6.1474 in^4 ro 0.0038931 k/ft Width 2.0297 in 3.0668 in 2.8619 in 5.9287 in 1.0141 in 1.1839 in 1.3136 in 2.4975 in 2.0332 in 1.0070 in 2.2690 in 2.3171 in Ixy a Xo Yo jx jy Cw J 16.059 in - 0.2411 in^4 3.879 deg 0.0399 in - 0.4680 in -0.1568 in 0.4349 in 0.518 in^6 2.8838 in^4 cro G opt i-17niG u1E!4ttr-s $ 7rp1 h-. • G o 1 CD ND/ir7Pn ifs " /0 '/ 0Z- * D• 64Pig = Ws-A- GJc,g. = 'iq4- I I BA 2 (34 /) = 8i6. 2 - (jD CON/Jin Div 4 5 N = ID D / P 1- ail ,pr t pc rG�'1/�Z. k= 1 Load Case A - 100% Product at every level level wx (kips) hx (inches) wxhxAk (in -kips) fx (kips) vx (kips) 1 1.134 62 70.308 0.13608 0.81648 2 1.134 124 140.616 0.27216 0.6804 3 1.134 186 210.924 0.40824 0.40824 wxhx (1-3) Cs Vbase 421.848 0.24 0.81648 kips k= 1 Load Case B - 100% Product at Top Level Only level wx (kips) hx (inches) wxhx^k (in -kips) fx (kips) vx (kips) 1 0.3297 62 20.4414 0.031053 0.525384 2 0.3297 124 40.8828 0.062106 0.494331 10 1.5297 186 284.5242 0.432225 0.432225 wxhx (1-10 345.8484 Cs Vbase 0.24 0.525384 kips Mot Mot fx" hx 8.43696 33.74784 75.93264 118.1174 fx*hx 1.925278 7.701111 80.39392 90.02031 AA! afghan associates, inc. 119 ENGINEERING 4875 SW Griffith Drive I Suite 300 I Beaverton. OR 197005 503.620.3030 I tel 503.620.5539 I fax www.eateng.com t)0/2gPainrrE S 1S�iL GP 17S By: Date. 1 f 1 t Project No • l L-./ 44-6 11 Sheet: 8 of: �� tty Y� Mx My /fI sl .011 , 30 6 , 26.0 / q. 5¢ 0.1-3 vt 0.666 40-- * wry &A- sE 13 Nor c/2, n ArkAy = 1.16 5 r$ a./P re if GDP CDM /NAT7tW : /. ZPL. f' 0. BS PL f y t ip (4e'er) (1vri?) ;tan 0. Zo+ (M4f) P/' oN4t- 8e QI I'1) 1 -i - 0.4-26 (M/¢) D. 91 9- Y7 �� Plx y A75"7 514- -.6--- 51 a• 4-3 2- ¢bl /a, 3 0-/3 / ag- d Di %17 l" ?ni To $ 7 Cdlv/t/FGf7Ovv t 1rrn-x : "15: 3 / ;4 ¥ D 16 6 b I x 7o p kr(1.t/rva : 0, g 9.o K-- AA ! afghan associates, inc. 11.1.9 ENGINEERING 4875 SW Griffith Drive I Suite 300 I Beaverton, OR 97005 503.820.3030 I tel 503.620.5539 I fax www.aaleng.com W OR IZ P® /N/E By: Date' i/P 7/J4. Project No * r7 / 1 /Vl M 8e %L Gg $ Sheet: _ _ L of: $ 5 ?It It Er /2/tz4< CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1 /22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. Member Check - 2004 North American Specification - US (LRFD) Page 1 Design Parameters: Lx 4.0000 ft Ly 5.1667 ft Lt 0.0000 ft Kx 1.0000 Ky 1.7000 Kt 1.0000 Cbx 1.0000 Cby 1.0000 ex 0.0000 in Cmx 1.0000 Cmy 1.0000 ey 0.0000 in Braced Flange: None Moment Reduction, R: 0.0000 Loads: P Mx Vy My Vx (k) (k-in) (k) (k-in) (k) Entered 2.835 0.260 0.011 17.540 0.306 Applied 2.835 0.260 0.011 17.540 0.306 Strength 20.509 45.834 1.365 32.863 14.446 Effective section properties at applied loads: Ae 0.91517 in^2 Ixe 1.2863 in^4 Iye 1.2863 in^4 Sxe(t) 0.85754 in^3 Sye(1) 0.85754 in^3 Sxe(b) 0.85754 in^3 Sye(r) 0.85754 in^3 Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) 0.138 + 0.006 + 0.583 NAS Eq. C5.2.2-2 (P, Mx, My) 0.073 + 0.006 + 0.53 NAS Eq. C3.3.2-1 (Mx, Vy) Sqrt(0.000 + 0.00 NAS Eq. C3.3.2-1 (My, Vx) Sqrt(0.285 + 0.00 0. 27 <= 1. 0.612 <= 1.0 )= 0.010 <= 1.0 0.534 <= 1.0 Calculation Details - 2004 North American Specification - US (L - Axial Load Eccentricity, P=2.835 k Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=3.0978 ksi, f2=3.0978 ksi W=1 k=4 X=0.038405 p=1 be=0.57 in b1=0.285 in b2=0.285 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=3.0978 ksi, f2=3.0978 ksi 4J=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.17787 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=2.64 in f1=3.0978 ksi, f2=3.0978 ksi yJ=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.17787 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 to CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=2.64 in f1=3.0978 ksi, f2=3.0978 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.17787 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=3.0978 ksi, f2=3.0978 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.038405 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=3.0978 ksi, f2=3.0978 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.10107 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.75 in NAS Eq. B2.3-9 b2=0.75 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KL/r)x=40.487, (KL/r)y=88.904 ax=177.62 ksi NAS C3.1.2.1-6 ay=36.837 ksi NAS C3.1.2.1-7 at=oo NAS C3.1.2.1-8 Fe=36.837 ksi Fy=60 ksi Xc=1.2763 NAS C4-4 Fn=30.344 ksi NAS C4-2 Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=30.344 ksi, f2=30.344 ksi y,=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 Page 2 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. =0.1202 NAS Eq. B2.1-4 P=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.55671 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Treat as two unstiffened elements f1=30.344 ksi, f2=30.344 ksi yi=1 NAS Eq. B3.2-1 k=0.43 NAS Eq. B3.2-3 X=0.3666 NAS Eq. B2.1-4 X<0.673 (fully effective) NAS Eq. B2.1-1 f1=30.344 ksi, f2=30.344 ksi yi=1 NAS Eq. B3.2-1 k=0.43 NAS Eq. B3.2-3 X=0.3666 NAS Eq. B2.1-4 ?<0.673 (fully effective) NAS Eq. 62.1-1 Element 4: Stiffened, w=2.64 in f1=30.344 ksi, f2=30.344 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.55671 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. 62.3-1 k=4 NAS Eq. B2.3-8 X=0.1202 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=30.344 ksi, f2=30.344 ksi yr=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.31631 NAS Eq. B2.1-4 P=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.75 in NAS Eq. B2.3-9 Page 3 Iz CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark b2=0.75 in b1+b2 > compression width (fully effective) Ae=0.79517 in^2 Pn=24.129 k S2c=1.8, 4c=0.85 Flexural Strength about X-axis ay=36.837 ksi at=ao Cb=1 Not subject to lateral -torsional buckling Flexural Strength about Y-axis ax=177.62 ksi at=oo Cb=1 Not subject to lateral -torsional buckling Compression and Bending Interaction ax=0.98256 ay=0.91 59 Chemelle Stark AAI Engineering, Inc. NAS Eq. B2.3-10 NAS C4-1 NAS C3.1.2.1-7 NAS C3.1.2.1-8 NAS C3.1.2.1-9 - same as fully braced strength NAS C3.1.2.1-6 NAS C3.1.2.1-8 NAS C3.1.2.1-9 - same as fully braced strength Effective section at applied loads Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=22.855 ksi, f2=22.739 ksi v=0.99496 k=4.0101 X=0.10418 p=1 be=0.57 in b1=0.28428 in b2=0.28572 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=20.802 ksi, f2=-15.197 ksi yr=0.73054 k=17.826 X=0.21834 p=1 be=2.64 in ho=3 in, bo=0.75 in, ho/bo=4 b1=0.70767 in b2=1.32 in Compression width=1.5255 in b1+b2 > compression width (fully effective) Element 3: No compressive stress (fully effective) Element 4: Stiffened, w=2.64 in f1=21.392 ksi, f2=-14.606 ksi yr=0.68279 k=16.896 a.=0.22743 p=1 be=2.64 in NAS C5.2.2-4 NAS C5.2.2-5 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq, B2.1-3 NAS Eq. B2.1-2 NAS Eq, B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-2 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-3 NAS Eq. B2.3-4 NAS Eq. B2.3-1 NAS Eq. B2.3-2 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 Page 4 13 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. ho=3 in, bo=0.75 in, ho/bo=4 b1=0.71685 in NAS Eq. B2.3-3 b2=1.32 in NAS Eq. B2.3-4 Compression width=1.5688 in b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=23.273 ksi, f2=23.158 ksi y1=0.99505 NAS Eq. B2.3-1 k=4.0099 NAS Eq. B2.3-8 X=0.10514 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.2843 in NAS Eq. B2.3-9 b2=0.2857 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=23.158 ksi, f2=22.855 ksi y1=0.98691 NAS Eq. B2.3-1 k=4.0262 NAS Eq. B2.3-8 X=0.27543 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.74512 in NAS Eq. B2.3-9 b2=0.75488 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 5 t CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AA! Engineering, Inc. Member Check - 2004 North American Specification - US (LRFD) Design Lx Kx Cbx Cmx Braced Loads: Parameters: 12.000 ft 1.0000 1.0000 1.0000 Flange: None Entered Applied Strength Effective Ae P (k) 0.113 0.113 34.948 Ly 0.000 ft Lt Ky 1.0000 Kt Cby 1.0000 ex Cmy 1.0000 ey Moment Reduction, R: 0.0000 Mx (k-in) 25.310 25.310 97.409 section properties at 1.27898 inA2 Ixe Sxe(t) Sxe (b) Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) NAS Eq. C5.2.2-2 (P, Mx, My) NAS Eq. C3.3.2-1 (Mx, Vy) NAS Eq. C3.3.2-1 (My, Vx) Page 1 0.000 ft 1.0000 0.0000 in 0.0000 in Vy My Vx (k) (k-in) (k) 0.666 0.000 0.000 0.666 0.000 0.000 21.710 45.986 10.137 applied loads: 5.2351 in^4 1.7089 in^3 1.8326 inA3 Iye Sye(1) Sye (r) 0.003 + 0.260 + 0.000 0.002 + 0.260 + 0.000 Sqrt(0.068 + 0.001) Sqrt(0.000 + 0.000) 1.3026 in^4 1.0979 in^3 0.9938 in^3 �.263 <= 1.0 0.262 <= 1.0 0.262 <= 1.0 �.000 <= 1.0 Calculation Details - 2004 North American Specification - US (LRFD) Axial Load Eccentricity, P=0.113 k Effective width calculations for part 1: Tube Element 1: Stiffened, w=2.0651 in f1=0.088352 ksi, f2=0.088352 ksi W=1 k=4 X=0.023498 p=1 be=2.0651 in b1=1.0325 in b2=1.0325 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=3.943 in f1=0.088352 ksi, f2=0.088352 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.044866 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=3.943 in NAS Eq. 62.1-2 b1=1.9715 in NAS Eq. 62.3-9 b2=1.9715 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=0.443 in f1=0.088352 ksi, f2=0.088352 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.0050408 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 NAS Eq. B2.3-1 NAS Eq. 62.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. 62.1-2 NAS Eq. B2.3-9 NAS Eq. 62.3-10 I 5 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. be=0.443 in NAS Eq. B2.1-2 b1=0.2215 in NAS Eq. B2.3-9 b2=0.2215 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=0.088352 ksi, f2=0.088352 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.013575 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.193 in NAS Eq. B2.1-2 b1=0.5965 in NAS Eq. B2.3-9 b2=0.5965 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=0.088352 ksi, f2=0.088352 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.013608 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=0.088352 ksi, f2=0.088352 ksi 4i=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.062452 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=5.4885 in NAS Eq. B2.1-2 b1=2.7443 in NAS Eq. B2.3-9 b2=2.7443 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Fully braced about Y axis Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KUr)x=71.176, (KL/r)y=0 ax=57.472 ksi ay=°o at=oo Fe=57.472 ksi Fy=60 ksi Xc=1.0218 Fn=38.76 ksi Effective width calculations for part 1: Tube Element 1: Stiffened, w=2.0651 in f1=38.76 ksi, f2=38.76 ksi NAS C3.1.2.1-6 NAS C3.1.2.1-7 NAS C3.1.2.1-8 NAS C4-4 NAS C4-2 Page 2 NAS Eq. B2.3-1 i rO CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. k=4 NAS Eq. B2.3-8 =0.49216 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.0651 in NAS Eq. B2.1-2 b1=1.0325 in NAS Eq. B2.3-9 b2=1.0325 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=3.943 in f1=38.76 ksi, f2=38.76 ksi yr=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 a.=0.93973 NAS Eq. B2.1-4 p=0.81501 NAS Eq. B2.1-3 be=3.2136 in NAS Eq. B2.1-2 b1=1.6068 in NAS Eq. B2.3-9 b2=1.6068 in NAS Eq. B2.3-10 Ineffective width=0.72941 in Element 3: Stiffened, w=0.443 in f1=38.76 ksi, f2=38.76 ksi yr=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.10558 NAS Eq, B2.1-4 p=1 NAS Eq. B2.1-3 be=0.443 in NAS Eq. B2.1-2 b1=0.2215 in NAS Eq. B2.3-9 b2=0.2215 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=38.76 ksi, f2=38.76 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X,=0.28433 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.193 in NAS Eq. 82.1-2 b1=0.5965 in NAS Eq. B2.3-9 b2=0.5965 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.28502 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=38.76 ksi, f2=38.76 ksi yr=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=1.3081 NAS Eq. B2.1-4 p=0.63591 NAS Eq. B2.1-3 be=3.4902 in NAS Eq. B2.1-2 b1=1.7451 in NAS Eq. B2.3-9 Page 3 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. b2=1.7451 in NAS Eq. B2.3-10 Ineffective width=1.9983 in Ae=1.0608 inA2 Pn=41.115 k NAS C4-1 )c=1.8, .c=0.85 Flexural Strength about X-axis ay=oo NAS C3.1.2.1-7 at=ao NAS C3.1.2.1-8 Ctf=1 NAS C3.1.2.1-10 Not subject to lateral -torsional buckling - same as fully braced strength Flexural Strength about Y-axis ax=57.472 ksi NAS C3.1.2.1-6 too NAS C3.1.2.1-8 Ctf=1 NAS C3.1.2.1-10 Not subject to lateral -torsional buckling - same as fully braced strength Compression and Bending Interaction ax=0.99846 NAS C5.2.2-4 ay=1 NAS C5.2.2-5 Effective section at applied loads Effective width calculations for part 1: Tube Element 1: No compressive stress (fully effective) Element 2: Stiffened, w=3.943 in f1=6.3849 ksi, f2=-12.678 ksi yr=1.9857 NAS Eq. B2.3-1 k=63.201 NAS Eq. B2.3-2 X=0.095953 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=3.943 in NAS Eq. B2.1-2 ho=4.375 in, bo=0.875 in, ho/bo=5 b1=0.79087 in NAS Eq. B2.3-6 b2=0.52978 in NAS Eq. B2.3-7 Compression width=1.3206 in b1+b2 > compression width (fully effective) Element 3: Stiffened, w=0.443 in f1=7.2358 ksi, f2=7.2358 ksi yr=1 NAS Eq. 82.3-1 k=4 NAS Eq. B2.3-8 X=0.045617 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.443 in NAS Eq. B2.1-2 b1=0.2215 in NAS Eq. B2.3-9 b2=0.2215 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=13.854 ksi, f2=8.0867 ksi y1=0.58369 NAS Eq. B2.3-1 k=4.9769 NAS Eq. B2.3-8 X=0.15239 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.193 in NAS Eq. B2.1-2 Page 4 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. b1=0.49373 in NAS Eq. B2.3-9 b2=0.69927 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=14.705 ksi, f2=14.705 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.17556 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=13.866 ksi, f2=-12.667 ksi yr=0.91352 NAS Eq. B2.3-1 k=21.84 NAS Eq. B2.3-2 X=0.33483 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=5.4885 in NAS Eq. B2.1-2 ho=5.9205 in, bo=1.625 in, ho/bo=3.6434 b1=1.4024 in NAS Eq. B2.3-3 b2=2.7443 in NAS Eq. B2.3-4 Compression width=2.8683 in b1+b2 > compression width (fully effective) Page 5 tq CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. Page 1 Member Check - 2004 North American Specification - US (LRFD) Design Parameters: Lx 4.0000 ft Ly 5.1667 ft Lt Kx 1.0000 Ky 1.7000 Kt Cbx 1.0000 Cby 1.0000 ex Cmx 1.0000 Cmy 1.0000 ey Braced Flange: None Moment Reduction, R: 0.0000 Loads: Entered Applied Strength P (k) 4.546 4.546 20.509 Mx (k-in) 2.590 2.590 45.834 Effective section properties at Ae 0.91517 in^2 Ixe Sxe(t) Sxe(b) Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) NAS Eq. C5.2.2-2 (P, Mx, My) NAS Eq. C3.3.2-1 (Mx, Vy) NAS Eq. C3.3.2-1 (My, Vx) Vy (k) 0.584 0.584 1.365 applied loads: 1.2863 in^4 0.85754 in^3 0.85754 in^3 0.0000 ft 1.0000 0.0000 in 0.0000 in My Vx (k-in) (k) 0.000 0.000 0.000 0.000 32.863 14.446 Iye Sye(1) Sye(r) 0.222 + 0.058 + 0.000 = 0.117 + 0.057 + 0.000 = Sqrt(0.003 + 0.183)= Sqrt(0.000 + 0.000)= 1.2863 in^4 0.85754 in^3 0.85754 in^3 .280 <= 1.0 0.174 <= 1.0 0.432 <= 1.0 000 <= Calculation Details - 2004 North American Specification - US (LRFD) Axial Load Eccentricity, P=4.546 k Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=4.9674 ksi, f2=4.9674 ksi w=1 k=4 X=0.048632 p=1 be=0.57 in b1=0.285 in b2=0.285 in bl+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=4.9674 ksi, f2=4.9674 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.22524 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=2.64 in f1=4.9674 ksi, f2=4.9674 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.22524 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. 82.3-9 NAS Eq. B2.3-10 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AA! Engineering, Inc. be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=2.64 in f1=4.9674 ksi, f2=4.9674 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.22524 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=4.9674 ksi, f2=4.9674 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.048632 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=4.9674 ksi, f2=4.9674 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.12798 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.75 in NAS Eq. B2.3-9 b2=0.75 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KL/r)x=40.487, (KUr)y=88.904 ax=177.62 ksi NAS C3.1.2.1-6 ay=36.837 ksi NAS C3.1.2.1-7 at=oo NAS C3.1.2.1-8 Fe=36.837 ksi Fy=60 ksi ?,c=1.2763 NAS C4-4 Fn=30.344 ksi NAS C4-2 Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 Page 2 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. X=0.1202 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=30.344 ksi, f2=30.344 ksi j=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.55671 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Treat as two unstiffened elements f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B3.2-1 k=0.43 NAS Eq. 83.2-3 a.=0.3666 NAS Eq. B2.1-4 X<0.673 (fully effective) NAS Eq. B2.1-1 f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. 83.2-1 k=0.43 NAS Eq. B3.2-3 a.=0.3666 NAS Eq. B2.1-4 X<0.673 (fully effective) NAS Eq. B2.1-1 Element 4: Stiffened, w=2.64 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.55671 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq, B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.1202 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.285 in NAS Eq. B2.3-9 b2=0.285 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=30.344 ksi, f2=30.344 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.31631 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.75 in NAS Eq. B2.3-9 Page 3 2- CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1 /22/2014 9:09:10 AM By: Chemetle Stark b2=0.75 in b1+b2 > compression width (fully effective) Ae=0.79517 inA2 Pn=24.129 k )c=1.8, 0=0.85 Flexural Strength about X-axis ay=36.837 ksi at=00 Cb=1 Not subject to lateral -torsional buckling - same as fully braced strength Chemelle Stark AAI Engineering, Inc. NAS Eq. B2.3-10 NAS C4-1 Flexural Strength about Y-axis ax=177.62 ksi at=QO Cb=1 Not subject to lateral -torsional buckling Compression and Bending Interaction ax=0.97203 ay=0.86515 Effective section at applied loads Effective width calculations for part 1: Stiffened Channel Element 1: Stiffened, w=0.57 in f1=3.4572 ksi, f2=2.3095 ksi w=0.66803 k=4.7371 =0.037282 p=1 be=0.57 in b1=0.24443 in b2=0.32557 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=2.64 in f1=2.0277 ksi, f2=2.0277 ksi w=1 k=4 X=0.14391 p=1 be=2.64 in b1=1.32 in b2=1.32 in b1+b2 > compression width (fully effective) Element 3: Stiffened, w=2.64 in f1=7.6252 ksi, f2=2.3095 ksi w=0.30288 k=6.0718 X.=0.22651 p=1 be=2.64 in b1=0.97882 in b2=1.6612 in b1+b2 > compression width (fully effective) NAS C3.1.2.1-7 NAS C3.1.2.1-8 NAS C3.1.2.1-9 NAS C3.1.2.1-6 NAS C3.1.2.1-8 NAS C3.1.2.1-9 - same as fully braced strength NAS C5.2.2-4 NAS C5.2.2-5 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 Page 4 23 CFS Version 5.0.2 Section: steelking 2000 column.sct Channel 3x3x0.75-14 Gage Rev. Date: 1/22/2014 9:09:10 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. Element 4: Stiffened, w=2.64 in f1=7.9071 ksi, f2=7.9071 ksi y,=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.28418 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.64 in NAS Eq. B2.1-2 b1=1.32 in NAS Eq. B2.3-9 b2=1.32 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=0.57 in f1=7.6252 ksi, f2=6.4775 ksi y,=0.84949 NAS Eq. B2.3-1 k=4.3078 NAS Eq. B2.3-8 X=0.058061 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.57 in NAS Eq. B2.1-2 b1=0.26505 in NAS Eq. B2.3-9 b2=0.30495 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=1.5 in f1=6.4775 ksi, f2=3.4572 ksi yf=0.53373 NAS Eq. B2.3-1 k=5.1353 NAS Eq. B2.3-8 X=0.12898 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.5 in NAS Eq. B2.1-2 b1=0.60821 in NAS Eq. B2.3-9 b2=0.89179 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 5 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. Page 1 Member Check - 2004 North American Specification - US (LRFD) Design Lx Kx Cbx Cmx Parameters: 12.000 ft 1.0000 1.0000 1.0000 Braced Flange: None Loads: Entered Applied Strength P (k) 0.204 0.204 34.948 Ly Ky Cby Cmy Moment 0.000 ft 1.0000 1.0000 1.0000 Reduction, Mx Vy (k-in) (k) 12.300 0.461 12.300. 0.461 97.409 21.710 Effective section properties at Ae 1.27898 in^2 Ixe Sxe (t ) Sxe(b) Interaction Equations NAS Eq. C5.2.2-1 NAS Eq. C5.2.2-2 NAS Eq. C3.3.2-1 NAS Eq. C3.3.2-1 (P, Mx, My) (P, Mx, My) (Mx, Vy) (My, Vx) Lt Kt ex ey R: 0.0000 applied loads: 5.2351 in^4 1.7089 in^3 1.8326 in^3 0.000 ft 1.0000 0.0000 in 0.0000 in My Vx (k-in) (k) 0.000 0.000 0.000 0.000 45.986 10.137 Iye Sye (1) Sye (r) 0.006 + 0.127 + 0.000 0.004 + 0.126 + 0.000 Sqrt(0.016 + 0.00 Sqrt(0.000 + 0.00 1.3026 in^4 1.0979 in^3 0.9938 in^3 Calculation Details - 2004 North American Specification - US (LRFD) Axial Load Eccentricity, P=0.204 k Effective width calculations for part 1: Tube Element 1: Stiffened, w=2.0651 in f1=0.1595 ksi, f2=0.1595 ksi W=1 k=4 X,=0.031572 p=1 be=2.0651 in b1=1.0325 in b2=1.0325 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=3.943 in f1=0.1595 ksi, f2=0.1595 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 ?=0.060283 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=3.943 in NAS Eq. B2.1-2 b1=1.9715 in NAS Eq. B2.3-9 b2=1.9715 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=0.443 in f1=0.1595 ksi, f2=0.1595 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.0067729 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. 82.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 44- CFS Version 5.0.2 Section: steelking 2000 pallet rack beam,sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. be=0.443 in NAS Eq. B2.1-2 b1=0.2215 in NAS Eq. B2.3-9 b2=0.2215 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=0.1595 ksi, f2=0.1595 ksi yr=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.018239 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.193 in NAS Eq. B2.1-2 b1=0.5965 in NAS Eq. B2.3-9 b2=0.5965 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=0.1595 ksi, f2=0.1595 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.018284 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=0.1595 ksi, f2=0.1595 ksi y,=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.083912 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=5.4885 in NAS Eq. B2.1-2 b1=2.7443 in NAS Eq. B2.3-9 b2=2.7443 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Fully braced about Y axis Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KUr)x=71.176, (KL/r)y=0 ax=57.472 ksi NAS C3.1.2.1-6 Cr y=00 NAS C3.1.2.1-7 at=ao NAS C3.1.2.1-8 Fe=57.472 ksi Fy=60 ksi Xc=1.0218 NAS C4-4 Fn=38.76 ksi NAS C4-2 Effective width calculations for part 1: Tube Element 1: Stiffened, w=2.0651 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 Page 2 26 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. k=4 NAS Eq. B2.3-8 X=0.49216 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=2.0651 in NAS Eq. B2.1-2 b1=1.0325 in NAS Eq. B2.3-9 b2=1.0325 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=3.943 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.93973 NAS Eq. B2.1-4 p=0.81501 NAS Eq. B2.1-3 be=3.2136 in NAS Eq. B2.1-2 b1=1.6068 in NAS Eq. B2.3-9 b2=1.6068 in NAS Eq. B2.3-10 Ineffective width=0.72941 in Element 3: Stiffened, w=0.443 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.10558 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.443 in NAS Eq. B2.1-2 b1=0.2215 in NAS Eq. B2.3-9 b2=0.2215 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.28433 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.193 in NAS Eq. B2.1-2 b1=0.5965 in NAS Eq. B2.3-9 b2=0.5965 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X,=0.28502 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=38.76 ksi, f2=38.76 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =1.3081 NAS Eq. B2.1-4 p=0.63591 NAS Eq. B2.1-3 be=3.4902 in NAS Eq. B2.1-2 b1=1.7451 in NAS Eq. B2.3-9 Page 3 ?"7 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark b2=1.7451 in Ineffective width=1.9983 in Ae=1.0608 in"2 Pn=41.115 k S2c=1.8, 0=0.85 Flexural Strength about X-axis ay=oo at=ao Ctf=1 Not subject to lateral -torsional buckling Flexural Strength about Y-axis ax=57.472 ksi at=ao Ctf=1 Not subject to lateral -torsional buckling Compression and Bending Interaction ax=0.99722 ay=1 Chemelle Stark AAI Engineering, Inc. NAS Eq. B2.3-10 NAS C4-1 NAS C3.1.2.1-7 NAS C3.1.2.1-8 NAS C3.1.2.1-10 - same as fully braced strength NAS C3.1.2.1-6 NAS C3.1.2.1-8 NAS C3.1.2.1-10 - same as fully braced strength Effective section at applied loads Effective width calculations for part 1: Tube Element 1: No compressive stress (fully effective) Element 2: Stiffened, w=3.943 in f1=3.2195 ksi, f2=-6.0447 ksi yr=1.8776 k=57.41 X=0.071489 p=1 be=3.943 in ho=4.375 in, bo=0.875 in, ho/bo=5 b1=0.8084 in b2=0.56186 in Compression width=1.3703 in b1+b2 > compression width (fully effective) Element 3: Stiffened, w=0.443 in f1=3.633 ksi, f2=3.633 ksi W=1 k=4 X=0.032324 p=1 be=0.443 in b1=0.2215 in b2=0.2215 in b1+b2 > compression width (fully effective) Element 4: Stiffened, w=1.193 in f1=6.8495 ksi, f2=4.0465 ksi yr=0.59077 k=4.9555 a.=0.10738 p=1 be=1.193 in NAS C5.2.2-4 NAS C5.2.2-5 NAS Eq. B2.3-1 NAS Eq. B2.3-2 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-6 NAS Eq. B2.3-7 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. 82.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 Page 4 CFS Version 5.0.2 Section: steelking 2000 pallet rack beam.sct Tube 6x2.5-14 Gage Rev. Date: 1/22/2014 9:55:24 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. b1=0.49518 in NAS Eq. B2.3-9 b2=0.69782 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 5: Stiffened, w=1.1959 in f1=7.263 ksi, f2=7.263 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.12338 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.1959 in NAS Eq. B2.1-2 b1=0.59795 in NAS Eq. B2.3-9 b2=0.59795 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 6: Stiffened, w=5.4885 in f1=6.8551 ksi, f2=-6.0392 ksi yv=0.88098 NAS Eq. B2.3-1 k=21.072 NAS Eq. B2.3-2 X=0.23967 NAS Eq. 132.1-4 p=1 NAS Eq. B2.1-3 be=5.4885 in NAS Eq. B2.1-2 ho=5.9205 in, bo=1.625 in, ho/bo=3.6434 b1=1.4142 in NAS Eq. B2.3-3 b2=2.7443 in NAS Eq. B2.3-4 Compression width=2.9179 in b1+b2 > compression width (fully effective) Page 5 CFS Version 5.0.2 Section: steelking 2000 diagonal brace.sct Cylindrical Tube 1.1250-16 Gage Rev. Date: 1/22/2014 9:58:29 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. Member Check - 2004 North American Specification - US (LRFD) Design Lx Kx Cbx Cmx Braced Loads: Parameters: 5.3200 ft 1.0000 1.0000 1.0000 Flange: None Entered Applied Strength (k) 0.9170 0.9170 1.4473 Ly 5.3200 ft Lt Ky 1.0000 Kt Cby 1.0000 ex Cmy 1.0000 ey Moment Reduction, R: 0.0000 Mx (k-in) 0.0220 0.0220 3.4432 Effective section properties at Ae 0.18998 in^2 Ixe Sxe(t) Sxe (b) Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) NAS Eq. C5.2.2-2 (P, Mx, My) NAS Eq. C3.3.2-1 (Mx, Vy) NAS Eq. C3.3.2-1 (My, Vx) Vy My (k) (k-in) 0.0000 0.0000 0.0000 0.0000 3.2547 3.4432 applied loads: 0.027183 in^4 0.048325 in^3 0.048325 in^3 I ye Sye (1) Sye (r) 0.634 + 0.012 + 0.00 0.095 + 0.006 + 0.0 Sqrt(0.000 + 0.0 Sqrt(0.000 + 0.0 Calculation Details - 2004 North American Specification - US Axial Load Eccentricity, P=0.917 k Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KL/r)x=168.77, (KUr)y=168.77 ax=10.222 ksi ay=10.222 ksi at=11268 ksi Fe=10.22 ksi Fy=60 ksi X,c=2.423 Fn=8.9629 ksi Ae=0.18998 inA2 Pn=1.7027 k S2c=1.8, 4c=0.85 Flexural Strength - same as fully braced strength Compression and Bending Interaction ax=0.52779 ay=0.52779 Page 1 5.3200 ft 1.0000 0.0000 in 0.0000 in Vx (k) 0.0000 0.0000 3.2547 0.027183 0.048325 0.048325 NAS C3.1.2.1-6 NAS C3.1.2.1-7 NAS C3.1.2.1-8 NAS C4-4 NAS C4-3 NAS C5.2.2-4 NAS C5.2.2-5 in^4 in^3 in^3 Ly Ky Cby Cmy Moment Mx (k-in) 0.0270 0.0270 6.1071 at CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1 x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. Member Check - 2004 North American Specification - US (LRFD) Page 1 Design Lx Kx Cbx Cmx Braced Loads: Parameters: 3.5800 ft 1.0000 1.0000 1.0000 Flange: None Entered Applied Strength P (k) 0.4260 0.4260 6.3197 Effective section properties Ae 0.31354 in^2 Ixe Sxe(t) Sxe (b) Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) NAS Eq. C5.2.2-2 (P, Mx, My) NAS Eq. C3.3.2-1 (Mx, Vy) NAS Eq. C3.3.2-1 (My, Vx) 3.5000 ft 1.0000 1.0000 1.0000 Reduction, Vy (k) 0.0000 0.0000 2.5970 Lt Kt ex ey R: 0.0000 applied loads: 0.05376 in^4 0.10753 in^3 0.10753 in^3 3.5000 ft 1.0000 0.0000 in 0.0000 in My Vx (k-in) (k) 0.0000 0.0000 0.0000 0.0000 8.9571 6.4684 Iye Sye(1) Sye (r) 0.15714 in^4 0.15714 in^3 0.15714 in^3 0.067 + 0.005 + 0.000 = 0.072 <= 0.027 + 0.004 + 0.000 = 0.031 <= Sgrt(0.000 + 0.000)= 0.004 <= Sqrt(0.000 + 0.000)= 0.000 <= Calculation Details - 2004 North American Specification - US (LRFD) 1.0 1.0 1.0 1.0 Axial Load Eccentricity, P=0.426 k Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=1.3587 ksi, f2=1.3587 ksi W=1 k=4 X=0.10538 p=1 be=1.6708 in b1=0.8354 in b2=0.8354 in bl+b2 > compression width (fully effective) Element 2: Stiffened, w=0.6708 in f1=1.3587 ksi, f2=1.3587 ksi yr=1 k=4 k=0.042307 p=1 be=0.6708 in b1=0.3354 in b2=0.3354 in bl+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=1.3587 ksi, f2=1.3587 ksi yr=1 k=4 ?,=0.10538 p=1 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=1.3587 ksi, f2=1.3587 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.042307 NAS Eq. B2.1-4 p=1 NAS Eq. 62.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. 82.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KL/r)x=103.74, (KUr)y=59.327 ax=27.052 ksi NAS C3.1.2.1-6 ay=82.722 ksi NAS C3.1.2.1-7 at=7235 ksi NAS C3.1.2.1-8 Fe=27.052 ksi Fy=60 ksi ?,c=1.4893 NAS C4-4 Fn=23.713 ksi NAS C4-2 Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.44022 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=0.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. 82.3-8 =0.17674 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. B2.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2,3-8 Page 2 �1 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. X.=0.44022 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=23.713 ksi, f2=23.713 ksi 41=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.17674 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. B2.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Ae=0.31354 inA2 Pn=7.4349 k NAS C4-1 )c=1.8, 4 c=0.85 Flexural Strength about X-axis ay=82.722 ksi NAS C3.1.2.1-7 at=7235 ksi NAS C3.1.2.1-8 Cb=1 NAS C3.1.2.1-9 Fy=60 ksi Fe=1850.1 ksi NAS C3.1.2.1-4 Fc=60 ksi Not subject to lateral -torsional buckling - same as fully braced strength Flexural Strength about Y-axis ax=27.052 ksi NAS C3.1.2.1-6 at=7235 ksi NAS C3.1.2.1-8 Cb=1 NAS C3.1.2.1-9 Fy=60 ksi Fe=723.97 ksi NAS C3.1.2.1-4 Fc=60 ksi Not subject to lateral -torsional buckling - same as fully braced strength Compression and Bending Interaction ax=0.94978 NAS C5.2.2-4 ay=0.98358 NAS C5.2.2-5 Effective section at applied loads Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=1.1218 ksi, f2=1.1218 ksi w=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.09575 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 3 3 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark AAI Engineering, Inc. Element 2: Stiffened, w=0.6708 in f1=1.5271 ksi, f2=1.1902 ksi yp=0.77941 NAS Eq. B2.3-1 k=4.4627 NAS Eq. B2.3-8 =0.042464 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.30208 in NAS Eq. B2.3-9 b2=0.36872 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=1.5956 ksi, f2=1.5956 ksi W=1 NAS Eq. 62.3-1 k=4 NAS Eq. B2.3-8 X 0.11419 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=1.5271 ksi, f2=1.1902 ksi yr=0.77941 NAS Eq. B2.3-1 k=4.4627 NAS Eq. B2.3-8 X=0.042464 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.30208 in NAS Eq. B2.3-9 b2=0.36872 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 4 33 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark AA! Engineering, Inc. Member Check - 2004 North American Specification - US (LRFD) Design Lx Kx Cbx Cmx Braced Loads: Parameters: 3.5800 ft 1.0000 1.0000 1.0000 Flange: None Entered Applied Strength P (k) 0.4260 0.4260 6.3197 Ly Ky Cby Cmy Moment Mx (k-in) 0.0270 0.0270 6.1071 Effective section properties at Ae 0.31354 in^2 Ixe Sxe(t) Sxe(b) Interaction Equations NAS Eq. C5.2.2-1 (P, Mx, My) NAS Eq. C5.2.2-2 (P, Mx, My) NAS Eq. C3.3.2-1 (Mx, Vy) NAS Eq. C3.3.2-1 (My, Vx) 3.5000 ft 1.0000 1.0000 1.0000 Reduction, R: Vy (k) 0.0000 0.0000 2.5970 Lt Kt ex ey 0.0000 applied loads: 0.05376 in^4 0.10753 in^3 0.10753 in^3 Page 1 3.5000 ft 1.0000 0.0000 in 0.0000 in My Vx (k-in) (k) 0.0000 0.0000 0.0000 0.0000 8.9571 6.4684 Iye Sye(1) Sye (r) 0.067 + 0.005 + 0.000 0.027 + 0.004 + 0.00 Sqrt(0.000 + 0.0 Sqrt(0.000 + 0.00 0.15714 in^4 0.15714 in^3 0.15714 in^3 e e 2 <= 1.0 e.031 <= 1.0 )= 0.004 <= 1.0 )= 0.000 <= 1.+ Calculation Details - 2004 North American Specification - US ( Axial Load Eccentricity, P=0.426 k Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=1.3587 ksi, f2=1.3587 ksi W=1 k=4 X=0.10538 p=1 be=1.6708 in b1=0.8354 in b2=0.8354 in b1+b2 > compression width (fully effective) Element 2: Stiffened, w=0.6708 in f1=1.3587 ksi, f2=1.3587 ksi 41=1 k=4 X=0.042307 p=1 be=0.6708 in b1=0.3354 in b2=0.3354 in b1+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=1.3587 ksi, f2=1.3587 ksi 41=.1 k=4 X=0.10538 p=1 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 NAS Eq. B2.1-2 NAS Eq. B2.3-9 NAS Eq. B2.3-10 NAS Eq. B2.3-1 NAS Eq. B2.3-8 NAS Eq. B2.1-4 NAS Eq. B2.1-3 34• CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark AA! Engineering, Inc. be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=1.3587 ksi, f2=1.3587 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.042307 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. B2.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Center of gravity shift: x=0 in, y=0 in Initial eccentricity: x=0 in, y=0 in Specified eccentricity: x=0 in, y=0 in Overall eccentricity: x=0 in, y=0 in Additional moments: My=0 k-in, Mx=0 k-in Axial Compression Strength (KL/r)x=103.74, (KL/r)y=59.327 ax=27.052 ksi NAS C3.1.2.1-6 ay=82.722 ksi NAS C3.1.2.1-7 at=7235 ksi NAS C3.1.2.1-8 Fe=27.052 ksi Fy=60 ksi ? c=1.4893 NAS C4-4 Fn=23.713 ksi NAS C4-2 Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.44022 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 2: Stiffened, w=0.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.17674 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. B2.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=23.713 ksi, f2=23.713 ksi W=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 Page 2 CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. X=0.44022 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=23.713 ksi, f2=23.713 ksi NJ=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 =0.17674 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.3354 in NAS Eq. B2.3-9 b2=0.3354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Ae=0.31354 inA2 Pn=7.4349 k C2c=1.8, 0c=0.85 NAS C4-1 Flexural Strength about X-axis ay=82.722 ksi NAS C3.1.2.1-7 at=7235 ksi NAS C3.1.2.1-8 Cb=1 NAS C3.1.2.1-9 Fy=60 ksi Fe=1850.1 ksi NAS C3.1.2.1-4 Fc=60 ksi Not subject to lateral -torsional buckling - same as fully braced strength Flexural Strength about Y-axis ax=27.052 ksi NAS C3.1.2.1-6 at=7235 ksi NAS C3.1.2.1-8 Cb=1 NAS C3.1.2.1-9 Fy=60 ksi Fe=723.97 ksi NAS C3.1.2.1-4 Fc=60 ksi Not subject to lateral -torsional buckling - same as fully braced strength Compression and Bending Interaction ax=0.94978 NAS C5.2.2-4 ay=0.98358 NAS C5.2.2-5 Effective section at applied loads Effective width calculations for part 1: Tube Element 1: Stiffened, w=1.6708 in f1=1.1218 ksi, f2=1.1218 ksi yi=1 NAS Eq. B2.3-1 k=4 NAS Eq. 82.3-8 X=0.09575 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2,1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 3 3a CFS Version 5.0.2 Section: steelking 2000 horizontal tube.sct Tube 1x2-16 Gage Rev. Date: 1/22/2014 10:00:12 AM By: Chemelle Stark Chemelle Stark MI Engineering, Inc. Element 2: Stiffened, w=0.6708 in f1=1.5271 ksi, f2=1.1902 ksi W=0.77941 NAS Eq. B2.3-1 k=4.4627 NAS Eq. B2.3-8 ?=0.042464 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.30208 in NAS Eq. B2.3-9 b2=0.36872 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 3: Stiffened, w=1.6708 in f1=1.5956 ksi, f2=1.5956 ksi kv=1 NAS Eq. B2.3-1 k=4 NAS Eq. B2.3-8 X=0.11419 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=1.6708 in NAS Eq. B2.1-2 b1=0.8354 in NAS Eq. B2.3-9 b2=0.8354 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Element 4: Stiffened, w=0.6708 in f1=1.5271 ksi, f2=1.1902 ksi yr=0.77941 NAS Eq. B2.3-1 k=4.4627 NAS Eq. B2.3-8 =0.042464 NAS Eq. B2.1-4 p=1 NAS Eq. B2.1-3 be=0.6708 in NAS Eq. B2.1-2 b1=0.30208 in NAS Eq. B2.3-9 b2=0.36872 in NAS Eq. B2.3-10 b1+b2 > compression width (fully effective) Page 4 3� (4) DNA " CpNNEcT7©v per/171.-c•' ". tlorE T7.4-7- 2x Seri- v7N 4 ,t-7,?-7F-xi,- SH to 8 P Fri ST N i To J $f47t-i. e) ' /'o c . /9-nr y Ensr€-rwwvq $F47v1 To CD L 4/" !N (8/v/V rff7oh/ : Vm4x ' 0,6bb! /'tms. = ;S_?pi K 311 r .4%). M Pt ,l ` D.66i6/% O' de -A. 95. V ".e4x4.; GS W*16 e /C. 31 /-v D Wiz• -1- 04.1 !' x" 3•B'� t 1� 1" fo(; 2- rj�b F12-0p7 3 0 4 94 - 9 : t41-nr-vrre ShorIxt1r . , r �Q(3 K/2 / O. / 5' e) ems. Ei1D. /D. l 5/5 = 3_ dt / 4 4*-14„ --; as g rivwx ff A j?rT"C e lb Co /tit 1%qN Coh//Vd2l7 01V: —fro t Mir = D• 98iz fPn = tLr� = , b566 L (5) = 3.,6 "(,bs) 4" op 1/e" Fi l ! E r w a Yla,e/ao/vr/F $Jricr = ,?4 (¢I = `t' 6 K ✓d k. li / 2 572) _ A . 5' " of 'M W ru, Pew onot., 0 S¢K ✓px RIAA I afghan associates, inc. ENGINEERING 4875 SW Griffith Drive I Suite 300 'Beaverton, OR 197005 503.820;3030 I tel 503.820,5539 I fax www.aeleng.com 4Jogle Po in/7F CwNNgcrren/ PPi 47L S By Dater* .1/R 1—I/4 Project No •, -14 D ! .1 Sheet: _P of: ___ / DA-1EJvr Con. IN(en WY enpire rn7 - R)v r tX D, 39 5 " (Fnv= past 6oxr 1 4 Wks': ) op Ft t 47 jet p 4-15 z: co ". o1'd.3& (-1, 25 No T rasps) (t 1e fn) friV o- (¢)(0. / a 3) ' 13.einemq oN pD Sr Pn rn f Cat t- 0.76(5)(, 395)(, b8)17-0) > g. 97-9- qPn. 99K 2cr 31''J/ £6 - - 'Zorn'' /eh, z 2531(�) = 3 ?-9 y ?w Rh? : 25 31(/) 1.2655x Za l'D/YN(017 in &In< IN B�i9 -! . 'H8' E4. � 3. GK ✓ 001 IDeli¢ur/ 04.4 , ;,1 Know 1 " bytt `.r,t, 7 IlkAA I afghan associates, inc. ENGINEERING 4875 SW Griffith Drive Suite 300 I Beaverton, OR 197005 503.820.3030 I tel 503.820.5539 ( fax www.aefeng.com Gvo,eIK Pot ivTE PfuET,e t ! L'f J UET1-t L By: alb.__ date: 8_14 Project No " "17 d I 1 Sheet: ( vEr C6J-IN. frtrr,t2s 1111z- j/K '7 kyr,= 0•66b PospofvDiNv1 tg m) Tor ti'r f cc pstE /PD ,7\ 1 W E 47 T 8 e-4m 47Np oorrk-r 7? -t 191(r- TV 1. 5 t �,. (2 "") t- /z a r/c = 25". 3//9t(a. 3 /64-K- //2'(o,-3a•7- Prn 6.6 ✓oe Po sr .NZ=Z-97 ah1 G2x 2x*Jj. x 3" 3. l6 4 x- It � rhL, = D, 36g 7yb'D,331 fe C Z x Z x 3/1 x 3 u 11,3 AA I afghan associates, inc. ENGINEERING 4875 SW Griffith Drive ( Suite 3001 Beaverton, OR 197005 503.620.3030 (tel 503.620.5539 1 fax www.aaieng.com Gvp1ePo»vrV_ PM,/ k%r-t<- By:. Date: ,,/ Y / m' /� Dfr1 E7YT CoivN t-f7 D"i Project NoAll-to 1 J Sheet -- 5C STER101111 TEST #030494-B Effect of Number of Rivets Upon Beam Connection Strength An independent engineering laboratory tested SK2000 racking for the purpose of quantifying several of the design advantages inherent in SK2000 pallet rack. The results of one such test is outlined below. Steel King SK2000 series boltless pallet racks feature beam connectors with 3 rivets per end connector. Some brands of pallet rack have only two rivets per connector (Figure 1). Both designs were tested, to quantify the actual advantage realized by users of SK2000 pallet rack. To eliminate any other influences upon the test (differing connector plate thickness', different rivet types, different welding patterns, etc.), identical connectors were tested, with the exception of the center (third) rivet, which was removed to create a comparable 2-rivet design. A uniaxial compressive load was applied to the center of the beam, which in turn was connected to two fixed columns (Figure 2). The load beam was short in length, and heavily constructed, to insure that the connection, not the beam, would fail first. Increasing force was applied, until yielding was detected by the testing machine. The load weight wired to achieve elding (failure) was -recorded. The tat ure was implemented for beams with both two (2) 2-rivet and two (2) 3-rivet end connector designs. The 2-rivet system failed at 16,100# of load weight. At this ed 3-rivet `" ;Warmed;at this same load ghtkandcontinued to perform, until reaching it's yield weight of 20,300# (Figure 3). CONCLUSION: The standard beam connection employed in Steel King SK2000 series pallet racks provide 26% greater strength and safety, solely on the basis of the third rivet. Further gains are possible, based upon SK2000 connector thickness, the high strength steel used for SK2000 rivets, and the full vertical welding of the connection, as compared to other rack designs, and with the 4-rivet connectors that are standard on SK2000 6" high beams. This is only one feature of the SK2000 system that gives users more value for their investment. 1/1 tot " .P4e 1• : • ''''" ,2At: 3.111--- rhrt Figure 1 other racks rivets (2 Figure 3 SK2000 2-rivet 5K2000 3-rivet 22,000# 20,000# 18,000# 16,000# 14,000# 12,000# 10,000# 8,000# 6,000# 4,000# 2,000# Force applied in pounds, to reach yield (failure) of beam connections. June 1, 2011 • Steel King Industries Inc. 441 SK2000 Tubular BOLTLESS Pallet Rack Upright Frame Capacity Chart SMO 6/1/2011 The listed component capacities are based upon RMI 2008 Design Specifications. System compliance includes consideration of connections. The great array of potential beam and column combinations cannot be represented in a chart format. For verification of system compliance to RMI 2008, or conformance to other local or regional codes, please consult our corporate office. 1) MAXIMUM LOAD PER SHELF LEVEL ON "RTFAP" & "RTFBP" = 7500#. 2) Capacities based upon interior usage. 3) Capacities are for selective rack only. 4) The above capacities do not consider seismic loading. 5) Each column/post of each frame MUST be anchored to an adequate concrete floor. 6) Capacities based upon installation in a plumb condition. 7) Capacities are total per upright, assuming equal loading on both posts. If any of these conditions do not apply to your application, or if you are unsure if they apply, DO NOT USE THIS CHART; In those cases, consult Steel King Engineering dept. for design information. 8) Safety Factor = 1.8:1 per AISI 2005 9) Capacities are to be reduced to account for the weight of the rack system; deduct the weight of beams, frames, decking, and accessories. 10) Other frame capacities are available for applications with large quantities; consult the factory. 11) RMI 2008 recommends the use of optional accessories to reduce damage to frames. Items including column protectors, double columns, and guard rail are available from Steel King. 5 Co p4 CotViV 7 HOW TO USE THIS CHART: 1) Calculate the madmum load per bay, number of levels X load per level (supported levels only). 2) Determine the MAXIMUM distance between levels, or the distance from the floor to the first beam level, whichever is greater. This dimension is the "vertical berm spacing to use in the above chart. 3) Using the "vertical beam spacing" as determined In step 2 above, follow the appropriate row towards the right until you find a capacity equal to or greater than the capacity required, as determined in step 1. 4) You may wish to choose an even greater capacity upright, for additional abuse resistance. 5) Verify the adequacy of the end user's floor to support these loads. SHEAR' PUNCH - BRAKE WELD PAINT RKd CU _ dt- A B A ITEM # QTY DESCRIPTION 1 2 B_ COLUMN STOCK 2 2 FPT3-5.8 BASE PLT. 3 5 HORIZONTAL 4 2 OR 3 DIAGONAL 5 2 OR 3 DIAGONAL NOTE- PHANTOM LINES FRAMES 60' - 72' WIDE ADD (1) DIAGONAL #4 ADD C1) DIAGONAL #5 R T F BG OliaX 147 a, WIDTH A 8 LENGTH-#3 LENGTH-#4 LENGTH-#5 24 2 3/4 2 1/2 18 1/4 40 46 26 3 3/8 2 7/8 20 1/4 42 46 28 2 3/4 2 1/2 22 1/4 42 48 30 2 1/4 2 7/8 24 1/4 44 48 , 32 2 7/8 2 1/4 26 1/4 44 50 34 2 3/8 2 3/4 28 1/4 46 50 36 2 2 1/4 30 1/4 46 52 38 2 3/4 1 7/8 32 1/4 48 52 42 2 2 1/4 36 1/4 50 56 'y 3 8 1/4 52 �b 46 2 5/8 2 3/4 40 1/4 54 58 48 2 2 42 1/4 56 60 50 1 7/8 1 7/8 44 1/4 58 62 52 2 7/8 3 46 1/4 58 62 54 2 3/4 2 5/8 48 1/4 60 64 56 1/43 15/1E 2 50 1/4 60 66 58 3 11/16 3 1/4 52 1/4 62 66 60 3 3/8 2 3/4 54 1/4 64 68 62 3 1/16 2 1/2 56 1/4 66 70 64 2 13/1E 2 1/2 58 1/4 68 72 66 2 1/2 3 5/8 60 1/4 70 72 68 2 1/4 3 1/4 62 1/4 72 X 70 2 3 64 1/4 74 76 72 „3 13/1E 2 3/4 66 1/4 74 78 A A REV. 8-14-06 6-16-00 1-2-97 7-29-93 DATE • V10E FRAIcES TA` 're DISTANCES M• L '& i WA TO ai t FOR F 6RAMES U TO 1• 9' V1 UPQ HTS a FRANC THS UP TO 72' R v15Ea N081z 3ITAL a DIACONAI. LOOMS - ADDED s?IXR NUgI R1 DESCRIPTION JW RL CS BW sr STEEL KING INDUSTRIES INC. �''°° HSAR R B sxevsNs pomT. � s44e1 MBONS {71S} 341-3120 BOLTLESS TUBULAR "8" FRAMES 190" - 194" HIGH (2" INCREMENTS) X = (2-4-6) DRAVN 34 D.VELCH DATE 3-22-93 .CAD FILE RTFH___.O94-212-REVD S.EET1 CHECKED iT SCAI.E NONE DWG NO. JDB LAUNDER r L VI I 0 0 0 0 0 C-4 7- 0 0 0 0 0 0 44 afghan associates, inc. ENGINEERING 4675 SW Griffith Drive 1 Suite 300 j Beaverton, OR 1 97005 503.620.3030 tel 503,620,5539 i fax www,aaleng.com Project No • /l 1 Sheet: of55 www.hilti.us Profis Anchor 2.4.5 Company: Specifier: Address: Phone I Fax: E-Mail: Page: 1 Project: Sub -Project I Pos. No.: Date: 1/22/2014 Specifler's comments: 1 Input data Anchor type and diameter: Kwlk Bolt TZ - CS 1/2 (2) Effective embedment depth: = 2.000 in., h,,,,,, = 2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued 1 Valid: 5/1/2013 15/1/2015 Proof: design method ACI 318 / AC193 Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.375 in. Anchor plate: lx x ly x t = 6.000 in. x 6.000 in. x 0.375 in.; (Recommended plate thickness: not calculated) Profile: Square HSS (AISC); (L x W x T) = 3.000 in. x 3.000 in. x 0.125 in. Base material: cracked concrete, 3000, fc' = 3000 psi; h = 4.000 in. Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Seismic loads (cat. C, D, E, or F) yes (D.3.3.6) Geometry (in.] & Loading Pb, in.lb] 4.2S 0 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c) 2003-2009 HiUG AG, FL-9494 Schaan Hilti is a registered Trademark of Hill AG, Schaan 4/J =MB www.hilti.us Company: Specifier: Address: Phone 1 Fax: E-Mail: Profis Anchor 2.4.5 Page: 2 Project: Sub -Project I Pos. No.: Date: 1/22/2014 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force 1 2 3 4 0 0 0 0 Shear force x Shear force y 80 80 0 80 80 0 80 80 0 80 80 0 max. concrete compressive strain: - [96e] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000/0.000): 0 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] 3 Tension Toad Steel Strength' Pullout Strength* Concrete Breakout Strength" * anchor having the highest loading Load Nu. [lb] NIA N/A N/A **anchor group (anchors in tension) Capacit. [lb] Nth N/A N/A Utilization pi a NJ4N,r A N/A N/A Status NA N/A N/A Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan 41 www.hliti.us Company: Specifier. Address: Phone I Fax: E-Mail: Profis Anchor 2.4.5 Page: 3 Project: Sub -Project I Pos. No.: Date: 1/22/2014 4 Shear Toad Load V„a pb] Capacity 4V„ pbj Utilization S„ = V j V, Status Steel length* 80 3572 3 OK Steel failure (with lever arm)* N/A N/A N/A N/A Pryout Strength** 318 1614 20 OK Concrete edge failure in direction ** N/A N/A N/A N/A " anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength Vale = ESR value refer to ICC-ES ESR-1917 • Vst„., 2 V„a ACI 318-08 Eq. (D-2) Variables n Ase,v Cn 2) fete [psi] 1 0.10 106000 Calculations Vs„ [lb] 5495 Results V5 95j 0.650 4hasei+ 3572b] V 80 [lb] 4.2 Pryout Strength =A\j VcP9 kg, [ (/\ANcO/ 4lec,N yled,N Vc.N ticp.N N9] Vcp 2 V„a ACI 318-08 Eq. (D-2) ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) ANc0 = 9 het ACI 318-08 Eq. (D-6) 1 Wec,N= (.1 + 2 eN s 1.0 ACI 318-08 Eq. (D-9) 3 hie = 0.7 + 0.3 (1.5h,f) s 1.0 ACI 318-08 Eq. (0-11) Wco N = M ICa,m,n 1.5hef) s 1.0 ACI 318-08 Eq. (D-13) t Cac Cee Nb = ke x KY ACI 318-08 Eq. (D-7) hat Pm] eot,N [in.] [in.] c M•1 2.000 0.000 000 Ved,N Variables f pn,] kc ACI 318-08 Eq. (D-31) fc IPA Results vpbj 5.800 00 17 1 3000 }ilmonauce. Vccps 0.750 0.400 1614 1.000 v.181 Nb [lb] 2834 Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilii AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan rr www.hiltims Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project: Sub -Project I Pos. No.: Date: Profis Anchor 2.4.5 4 1/22/2014 5 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re -distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used. The P factor is increased for non -steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Refer to the manufacturer's product literature for cleaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required in accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C, D. E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions' that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "wall out -of -plane forces" as defined in ASCE 7, Equation 12.11-1 or Equation 12,14-10. • It is the responsibility of the user when inputting values for brittle reduction factors 4nan 111e) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of 0ne"d"aHe = 1.0 as a means of satisfying ACI 318-08, Part D.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for piaus;bdity! PROFIS. Anchor ( c ) 2003-2009 Hilti AG, Ft.•9494 Schaan Hilti is a registered Trademark of HH!ti AG, Schaan CZ023Z1 www.hilti.us Company: Specifier: Address: Phone I Fax: E-Mail: Profis Anchor 2.4.5 Page: 1 Project: Sub -Project I Pos. No.: Date: 1/30/2014 Specifier's comments: 1 Input data Anchor type and diameter: Kwlk Bolt TZ - CS 1 /2 (2) Effective embedment depth: h,n = 2.000 in., hnom = 2.375 in. Material: Carbon Steel Evaluation Service Report: ESR-1917 Issued 1 Valid: 5/1/2013 15/1/2015 Proof: design method ACI 318 /AC193 Stand-off installation: eb = 0.000 in. (no stand-off); t = 0.375 in. Anchor plate: Ix x ly x t = 6.000 in. x 6.000 in. x 0.375 in.; (Recommended plate thickness: not calculated) Profile: Square HSS (AISC); (L x W x T) = 3.000 in. x 3.000 in. x 0.125 in. Base material: cracked concrete, 3000, fc' = 3000 psi; h = 4.000 in. Reinforcement: tension: condition B, shear: condition B; no supplemental splitting reinforcement present edge reinforcement: none or < No. 4 bar Seismic Toads (cat. C, D, E, or F) yes (D.3.3.6) Geometry [in.] & Loading [Ib, in.lb] Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schwan Hii i is a registered Trademark of Hilti AG, Schaan 1=1116T 1 www.hilti.us Profis Anchor 2.4.5 Company: Specifier: Address: Phone I Fax: E-Mail: Page: Project Sub -Project I Pos. No.: Date: 2 1/30/2014 2 Load case/Resulting anchor forces Load case: Design loads Anchor reactions [lb] Tension force: (+Tension, -Compression) Anchor Tension force Shear force Shear force x Shear force y 1 346 52 -52 0 2 346 52 -52 0 3 346 52 -52 0 4 346 52 -52 0 max. concrete compressive strain: - [%o] max. concrete compressive stress: - [psi] resulting tension force in (x/y)=(0.000/0.000): 1383 [lb] resulting compression force in (x/y)=(0.000/0.000): 0 [lb] 3 Tension load Load N. [lb] engt-i't 346 Pullout Strength* N/A Concrete Breakout Strength** 1383 * anchor having the highest loading "anchor group (anchors in tension) 3.1 Steel Strength Nora = ESR value Naw12 Nu. Variables n 1 Calculations N. Obi refer to ICC-ES ESR-1917 ACI 318-08 Eq. (D-1) A..H [in.2] ruin [ps7 6.10 106000 10705 Results 1trJ05 00 No [Ib] 8029 Nua [lb] 346 Capacity [Ib] Utilization N/A 1499 N/A 93 Status N/A OK Input data and results must be checked for agreement with the existing conditions and for plausibilityt PROFIS Anchor ( c) 2003-2009 Hilti AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan • www.hlltl.us Profis Anchor 2.4.5 3 Company: Specifier: Address: Phone 1 Fax: E-Mail: Page: Project: Sub -Project I Pos. No.: Date: 1/30/2014 3.2 ConcreterBreakout Strength Nc )k� + (AriwWec.N,Ied,N Wc,N V+cp.N Nb 4, Nct,g 2 Nue Aft see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) ANco = 9 Nil 1 Wec.N 1 e) 51.0 3 hd/ Werth =0.7+0.3(1 h°)51.0 WwN =MAX( . 1. N) 5 1.0 cac Nb=kcx'he ACI 318-08 Eq. (D-5) ACI 318-08 Eq. (D-1) ACI 318-08 Eq. (D-6) ACI 318-08 Eq. (0-9) ACI 318-08 Eq. (D-11) ACI 318-08 Eq. (D-13) ACI 318-08 Eq. (D-7) Variables 2.di 0 0000 I e0.N�00 cereer Ik►•1 Coo [in-] 5.500 17 Calculations Arta-21 Ara Results Nlb] 7sM [in 2J fc [Psi] 3000 0. N[Ibj Nu, Ilb] 1383 Nb nb] Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003-2009 Hilt AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schaan Company: Specifier: Address: Phone I Fax: E-Mail: www.hilti.us Profis Anchor 2.4.5 4 Page: Project: Sub -Project I Pos. No.: Date: 1/30/2014 4 Shear load Load Vt„ jib] Capacity on [Ibi Utilization pr = Va.V„ Status Steel Strength• 52 3572 2 OK Steel failure (with lever arm)* N/A N/A N/A N/A Pryout Strength** 207 1614 13 OK Concrete edge failure in direction ** N/A N/A N/A N/A * anchor having the highest loading **anchor group (relevant anchors) 4.1 Steel Strength V„i, = ESR value refer to ICC-ES ESR-1917 V,t,,, 2 Vt„ ACI 318-08 Eq. (D-2) Variables n A„,v [in 2] f t. [Psi] 1 0.10 106000 Calculations V. [lb] 5495 Results V. [lb] 5495 $asel 0.650 4) VS, [lb] Vt e [lb] 3572 52 4.2 Pryout Strength Vepg = kep RA_. _ / ] Wec,N Wed,N Wc,N l)rcp,N Nb] 41 Vcpg 2 V„a Nc0 ANc see ACI 318-08, Part D.5.2.1, Fig. RD.5.2.1(b) ANco =9h2 1 Weo,N = 1 @ 51.0 3he Wed.N=0.7+0.3(c ) s 1.0 =MAXis,mn 1.5he)s1.0 Cac • Cac Nb = kc a, heir Wcp,N Variables cp 1 6`t Calculations At. [in.2] 105.06 Results V1686 ACI 318-08 Eq. (D-31) ACI 318-08 Eq. (D-2) ACI 318-08 Eq. (D-6) ACI 318-08 Eq. (D-9) ACI 318-08 Eq. (D-11) ACI 318-08 Eq. (D-13) ACI 318-08 Eq. (D-7) eor,N [in.] ece,N [in.] ca,tde [in.] 2.000 0.000 0.000 AN Dn.] kc I [Psi] 5.500 17 1 3000 36.00Apsoo 2I 1,0000 1.000 WNW Nb b] 1.000 1.00.00 0 2634 9« Ir rc+e a V� [lb] V, Pb) .700 0.750 0.400 1614 207 5 Combined tension and shear loads t v S Utilization PN,V [%] Status 0 0.128 1,000 a8 OK (3Nv=((3N+6u)/1.2<=1 Input data and results must be checked for agreement with the existing conditions and for plausibilityt PROFIS Anchor ( c ) 2003-2009 Hilti AG, FL-9494 Schwan Hilt, is a registered Trademark of Hilti AG. Schwan 1104,01r' www.hiltt.us Company: Page: Specifier: Project: Address: Sub -Project I Pos. No.: Phone I Fax: t Date: E-Mail: Profis Anchor 2.4.5 5 1/30/2014 6 Warnings • To avoid failure of the anchor plate the required thickness can be calculated in PROFIS Anchor. Load re -distributions on the anchors due to elastic deformations of the anchor plate are not considered. The anchor plate is assumed to be sufficiently stiff, in order not to be deformed when subjected to the loading! • Condition A applies when supplementary reinforcement is used. The cD factor is increased for non -steel Design Strengths except Pullout Strength and Pryout strength. Condition B applies when supplementary reinforcement is not used and for Pullout Strength and Pryout Strength. Refer to your local standard. • Refer to the manufacturer's product literature for leaning and installation instructions. • Checking the transfer of loads into the base material and the shear resistance are required In accordance with ACI 318 or the relevant standard! • An anchor design approach for structures assigned to Seismic Design Category C, D, E or F is given in ACI 318-08 Appendix D, Part D.3.3.4 that requires the governing design strength of an anchor or group of anchors be limited by ductile steel failure. If this is NOT the case, Part D.3.3.5 requires that the attachment that the anchor is connecting to the structure shall be designed so that the attachment will undergo ductile yielding at a load level corresponding to anchor forces no greater than the controlling design strength. In lieu of D.3.3.4 and D.3.3.5, the minimum design strength of the anchors shall be multiplied by a reduction factor per D.3.3.6. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving "non-structural components" as defined in ASCE 7, Section 13.4.2. An alternative anchor design approach to ACI 318-08, Part D.3.3 is given in IBC 2009, Section 1908.1.9. This approach contains "Exceptions" that may be applied in lieu of D.3.3 for applications involving 'Wall out -of -plane forces" as defined In ASCE 7, Equation 12.11-1 or Equation 12.14-10. • It is the responsibility of the user when inputting values for brittle reduction factors (4,",r,du„t,,) different than those noted in ACI 318-08, Part D.3.3.6 to determine if they are consistent with the design provisions of ACI 318-08, ASCE 7 and the governing building code. Selection of 0,,,,,d,,,,re = 1.0 as a means of satisfying ACI 318-08, Part 0.3.3.5 assumes the user has designed the attachment that the anchor is connecting to undergo ductile yielding at a force level <= the design strengths calculated per ACI 318-08, Part D.3.3.3. Fastening meets the design criteria! Input data and results must be checked for agreement with the existing conditions and for plausibility! PROFIS Anchor ( c ) 2003.2009 HiIG AG, FL-9494 Schaan Hilti is a registered Trademark of Hilti AG, Schwan cg AA' afghan associates, inc. Project Title: Engineer: Project Descr: Project ID: ENGINEERING 4875 SW Griffith Drivel Suite 3001 Beaverton, OR i 97005 503.820.3030 t l.1503.820.5539 fax (wwwaeing.corn Pant Load on Slab Lic. # : Kw-0600 a92 Description :-woriipointe Code References Calculations per Load Combinations Used : ASCE 7-02 Analytical Values d - Slab Thickness FS - Req'd Factor of Safety 3.0 :1 Analtysis Formulas Pn =1.72 [ (Ks R1 / Ec) 10,000 + 3.6] Fr d"2 Ks = Soil modulus of subgrade reaction R1 = 50% plate average dimension = sqrt( PIWid * PILen) /2 Ec = Concrete elastic modulus Fr - Concrete modulus of rupture = 7.5 * sqrt( Pc ) d - Slab Thickness Load & Capacity Table Load ID Plate (in) R1 Wld Len (in) 4.0 in Ks - Soil Modulus of Subgrade Reaction Ec - Concrete Elastic Modulus fc - Concrete Compressive Strength - Poisson's Ratio - LRFD Reduction Factor Min. Adjacent Load Distance 1 e= 1 INC ttis 2013,8uAds6,1 13 LIC0115C:e : Ai Enginect,og 150.0 Pci 3,122.0 ksi 3.0 ksi 0.150 0.850 27.536 in Min Adjacent Column Distance =1.5 * ( [ Ec d"31(12 * ( 1- u"2 ) Ks ] A 1/4 ) Ec = Concrete elastic modulus d - Slab Thickness u - Poisson's ratio Ks = Soil modulus of subgrade reaction A plied ConcentratedLoad ion Plate - ip D Lr L SWE Governing Pu Phi*Pn Ld Comb (kip) (kip) Check p max 0.00 0.00 0.00 4.55 +1.40D 6.4 34.6 Pass, FS= 5.43 >= 3 PERMIT COORD COPY PLAN REVIEW/ROUTING SLIP PERMIT NUMBER: D14-0045 PROJECT NAME: WORKPOINTE SITE ADDRESS: 520 ANDOVER PK W DATE: 02/03/2014 X Original Plan Submittal Response to Correction Letter # Revision # before Permit Issued Revision # after Permit Issued DEPARTMENTS: Bung Division Public Works n Fire Prevention Structural AVC • n Planning Division Permit Coordinator n PRELIMINARY REVIEW: Not Applicable ❑ (no approval/review required) DATE: 02/06/14 Structural Review Required REVIEWER'S INITIALS: DATE: APPROVALS OR CORRECTIONS: Approved Corrections Required n Approved with Conditions Denied (corrections entered in Reviews) (ie: Zoning Issues) DUE DATE: 03/06/14 Notation: REVIEWER'S INITIALS: DATE: Permit Center Use Only CORRECTION LETTER MAILED: Departments issued corrections: Bldg ❑ Fire ❑ Ping ❑ PW ❑ Staff Initials: 12/18/2013 DIVERSIFICATION INC Page 1 of 2 0 Washington State Department of Labor & Industries DIVERSIFICATION INC Owner or tradesperson ARNOLD, MICHAEL LESLIE Principals ARNOLD, MICHAEL LESLIE ARNOLD, MATTHEW LAIRD ARNOLD, MICHELLE LESLIE Doing business as DIVERSIFICATION INC WA UBI No. 601 133 014 9877 40TH AVE S SEATTLE, WA98118-5602 206-763-4030 KING County Business type Corporation Governing persons MATTHEW (MATLAIRDARNOLD License Verify the contractor's active registration / license / certification (depending on trade) and any past violations. Construction Contractor Active. Meets current requirements. License specialties INST EQUIP/STAT FURN/LAB T/LO License no. DIVERI*999BP Effective — expiration 01 /17/2001 — 01/03/2015 Bond North American Spec Ins Co Bond account no. SUR2178100 Received by L&I 01/31/2014 Insurance UNIGARD INS CO Policy no. CM014221 Received by L&I 11/26/2013 Savings No savings accounts during the previous 6 year period. $6, 000.00 Effective date 01/07/2014 $1,000,000.00 Effective date 12/01/2010 Expiration date 12/01/2014 https://secure.lni.wa.gov/verify/Detail.aspx?UBI=601133014&LIC=DIVERI*999BP&SAW= 02/20/2014