HomeMy WebLinkAboutPermit M14-0205 - COSTCO - CONDENSORSCOSTCO
400 COSTCO DR
M14-0205
Parcel No:
Address:
City of Tukwila
Department of Community Development
6300 Southcenter Boulevard, Suite #100
Tukwila, Washington 98188
Phone: 206-431-3670
Inspection Request Line: 206-438-9350
Web site: http://www.TukwilaWA.gov
2523049057
400 COSTCO DR BLDG
Project Name: COSTCO
MECHANICAL PERMIT
Permit Number: M14-0205
Issue Date: 11/19/2014
Permit Expires On: 5/18/2015
Owner:
Name:
Address:
Contact Person:
Name:
Address:
Contractor:
Name:
Address:
License No:
Lender:
Name:
Address:
COSTCO WHOLESALE
999 LAKE DR ATTN: PROPERTY TAX
#06, ISSAQUAH, WA, 98027
BILL ZORNES
19430 68 AVE S , KENT, WA, 98032
KEY MECHANICAL CO OF WA
19430 68TH AVE S #B, KENT, WA,
98032-1193
KEYMEW*240NZ
Phone: (253) 872-7392
Phone: (253) 872-7392
Expiration Date:
DESCRIPTION OF WORK:
REPLACE EXISTING CONDENSORS A/B LIKE FOR LIKE. EXISTING ARE WORN OUT AND ARE IN NEED OF A CHANGE.
Valuation of Work: $17,000.00
Type of Work: REPLACEMENT
Fuel type: ELECT
Fees Collected: $415.74
Electrical Service Provided by: PUGET SOUND ENERGY
Water District: TUKWILA
Sewer District: TUKWILA SEWER SERVICE
Current Codes adopted by the City of Tukwila:
International Building Code Edition:
International Residential Code Edition:
International Mechanical Code Edition:
Uniform Plumbing Code Edition:
2012
2012
2012
2012
International Fuel Gas Code:
WA Cities Electrical Code:
WA State Energy Code:
2012
2014
2012
Permit Center Authorized Signature:
Date:
I hearby certify that I have read and examined this permit and know the same to be true and correct. All
provisions of law and ordinances governing this work will be complied with, whether specified herein or not.
The granting of this permit does not presume to give authority to violate or cancel the provisions of any other
state or local laws regulating construction or the performance of work. I am authorized to sign and obtain this
development permit and agree to the conditions attached to this permit.
Signature:
Print Name: gv-ea S
Date: <<! 1 it LI
This permit shall become null and void if the work is not commenced within 180 days for the date of issuance, or if
the work is suspended or abandoned for a period of 180 days from the last inspection.
PERMIT CONDITIONS:
1: Readily accessible access to roof mounted equipment is required.
2: All construction shall be done in conformance with the Washington State Building Code and the
Washington State Energy Code.
3: Remove all demolition rubble and loose miscellaneous material from lot or parcel of ground, properly cap
the sanitary sewer connections, and properly fill or otherwise protect all basements, cellars, septic tanks,
wells, and other excavations. Final inspection approval will be determined by the building inspector based
on satisfactory completion of this requirement.
4: All plumbing and gas piping work shall be inspected and approved under a separate permit issued by the
City of Tukwila Building Department (206-431-3670).
5: All electrical work shall be inspected and approved under a separate permit issued by the City of Tukwila
Permit Center.
6: VALIDITY OF PERMIT: The issuance or granting of a permit shall not be construed to be a permit for, or an
approval of, any violation of any of the provisions of the building code or of any other ordinances of the City
of Tukwila. Permits presuming to give authority to violate or cancel the provisions of the code or other
ordinances of the City of Tukwila shall not be valid. The issuance of a permit based on construction
documents and other data shall not prevent the Building Official from requiring the correction of errors in
the construction documents and other data.
7: ***MECHANICAL PERMIT CONDITIONS***
8: All mechanical work shall be inspected and approved under a separate permit issued by the City of Tukwila
Permit Center (206/431-3670).
9: All permits, inspection record card and approved construction documents shall be kept at the site of work
and shall be open to inspection by the Building Inspector until final inspection approval is granted.
10: Manufacturers installation instructions shall be available on the job site at the time of inspection.
PERMIT INSPECTIONS REQUIRED
Permit Inspection Line: (206) 438-9350
1800 MECHANICAL FINAL
0705 REFRIGERATION EQUIP
0701 ROUGH -IN MECHANICAL
CITY OF TUKWILA
Community Development Department
Public Works Department
Permit Center
6300 Southcenter Blvd., Suite 100
Tukwila, WA 98188
http://www.ci.tuk-wila.wa.us
Building Permit No. 6 .
Mechanical Permit No. l /V
Plumbing/Gas Permit No.
Public Works Permit No.
Project No.
(For office use only)
Applications and plans must be complete in order to be accepted for plan review.
Applications will not be accepted through the mail or by fax.
**Please Print**
Site Address: 400 Costco Drive
Tenant Name: Costco Wholesale
King Co Assessor's Tax No.:
Suite Number: Floor:
New Tenant: ❑ Yes X❑..No
Property Owners Name: Costco Wholesale
Mailing Address: 999 Lake Drive
Issaquah
City
Wa
State
98027
Zip
CONTACT PERSON - who do we contact when your permit is ready to be issued
Name: Bill Zornes
Mailing Address: 19430 68th Ave South
E-Mail Address: BZornes@KeyMechanical.com
Day Telephone: 2 5 3. 8 7 2. 7 3 9 2
Kent Wa 98032
City State
Fax Number: 2 5 3. 8 7 2. 7 3 9 8
Zip
GENERAL CONTRACTOR INFORMATION —
(Contractor Information. for Mechanical (pg 4) for Plumbing and Gas Piping (pg 5))
Company Name:
Mailing Address:
City
Contact Person: Day Telephone:
E-Mail Address: Fax Number:
Contractor Registration Number: Expiration Date:
State
Zip
ARCHITECT OF RECORD — All plans must be wet stamped by Architect of Record
Company Name: N/A
Mailing Address:
city
Contact Person: Day Telephone:
E-Mail Address: Fax Number:
State
Zip
ENGINEER OF RECORD - All plans must be wet stamped by Engineer of Record
Company Name:
Mailing Address:
N/A
City
State
Zip
Contact Person: Day Telephone:
E-Mail Address: Fax Number:
Q:\ApplicationsTorms-Applications On Line\3-2006 - Permit Application.doc
Revised: 9-2006
bh
Page 1 of 6
MECHANICAL PERMITINFORMATION - 206-431-3670
MECHANICAL CONTRACTOR INFORMATION
Company Name: Key Mechanical Company of Wa.
Mailing Address:19430 68th Ave South
Contact Person: Bill Zornes
Kent
Wa 98027
E-Mail Address: BZornes@KeyMechanical . com
Contractor Registration Number: KEYMEW* 24 ONZ
City State
Day Telephone: 2 5 3. 8 7 2. 7 3 9 2
Fax Number: 2 5 3. 8 7 2. 7 3 9 8
Zip
Expiration Date:
Nti5 0010310
Valuation of Mechanical work (contractor's bid price): $ $17 , 0 0 0 . 0 0
Scope of Work (please provide detailed information):
Replace existing condensers A/B. like for like. existing are worn out and
are in need of a change.
Use: Residential: New .... ❑ Replacement .... ❑
Commercial: New .... ❑ Replacement ....El
Fuel Type: Electric ❑ Gas....❑ Other:
Indicate type of mechanical work being installed and the quantity below:
Unit Type:
Qty
Unit Type:
Qty
Unit Type:
Qty
Boiler/Compressor:
Qty
Furnace<100K BTU
Air Handling Unit >10,000
CFM
Fire Damper
0-3 HP/100,000 BTU
Furnace>100K BTU
Evaporator Cooler
Diffuser
3-15 HP/500,000 BTU
Floor Furnace
Ventilation Fan Connected
to Single Duct
Thermostat
15-30 HP/1,000,000 BTU
Suspended/Wall/Floor
Mounted Heater
Ventilation System
Wood/Gas Stove
30-50 HP/1,750,000 BTU
Appliance Vent
Hood and Duct
Emergency
Generator
50+ HP/1,750,000 BTU
Repair or Addition to
Heat/Refrig/Cooling
System
Incinerator - Domestic
Other Mechanical
Equipment
2
Remote Condenser
Air Handling Unit
<10,000 CFM
Incinerator — Comm/Ind
Q:\Applications\forms-Applications On Line\3-2006 - Permit Application.doc
Revised: 9-2006
bh
Page 4 of 6
PERMIT APPLICATION NOTES - Applicable to all permits in this application
Value of Construction — In all cases, a value of construction amount should be entered by the applicant. This figure will be reviewed and is subject
to possible revision by the Permit Center to comply with current fee schedules.
Expiration of Plan Review — Applications for which no permit is issued within 180 days following the date of application shall expire by limitation.
Building and Mechanical Permit
The Building Official may grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be
requested in writing and justifiable cause demonstrated. Section 105.3.2 International Building Code (current edition).
Plumbing Permit
The Building Official may grant one extension of time for an additional period not exceeding 180 days. The extension shall be requested
in writing and justifiable cause demonstrated. Section 103.4.3 Uniform Plumbing Code (current edition).
I HEREBY CERTIFY THAT I HAVE READ AND EXAMINED THIS APPLICATION AND KNOW THE SAME TO BE TRUE UNDER
PENALTY OF PERJURY BY THE LAWS OF THE STATE OF WASHINGTON, AND I AM AUTHORIZED TO APPLY FOR THIS PERMIT.
BUILDING OWNE
Signature:
Print Name: ty� l i i gynei
Mailing Add
ZED AGENT:
Date: 10.31.2014
Day Telephone: 2 5 3. 8 7 2. 7 3 9 2
Kent
City
State
Zip
Date Application Accepted:
1` 12,s_
Date Application Expires:
�` ��
T---
Staff Initials:
0 /J
Q:\Applications\Forms-Applications On Line\3-2006 - Permit Application.doc
Revised: 9-2006
bh
Page 6 of 6
DESCRIPTIONS
PermitTRAK
Cash Register Receipt
City of Tukwila
ACCOUNT
QUANTITY PAID
$415.74
M 14=0205
Address. 400 COSTCO DR BLDG
pn: 2523049057 .r
415.74
MECHANICAL
$399.75
PERMIT ISSUANCE BASE FEE
R000.322.100.00.00
0.00
$32.50
PERMIT FEE
R000.322.100.00.00
0.00
$287.30
PLAN CHECK FEE
R000.322.102.00.00
0.00
$79.95
TECHNOLOGY FEE
$15.99
TECHNOLOGY FEE
TOTAL FEES PAID BY RECEIPT: R3532
R000.322.900.04.00
0.00
$15.99
$415.74
Date Paid: Wednesday, November 12, 2014
Paid By: KEY MECHANICAL COMPANY
Pay Method: CHECK 2620
Printed: Wednesday, November 12, 2014 11:17 1 of 1
AM
SYSTEMS
INSPECTION RECORD
Retain a copy with permit
INSPECTION NO. PERMIT NO.
it4 .-01,0
CITY OF TUKWILA BUILDING DIVISION
6300 Southcenter Blvd., #100, Tukwila. WA 98188 (206) 431-3670
Permit Inspection Request Line (206) 436-9350
Project;
( 'st
Type of44C_Pn: .0
Ic-tej6ff- -1----A
Address:3 6,05.7 )(es.
Date (red, :so /
Special Instructions:
n) (-- .i r`°- -
.,, j • ' ‘ s 9 i } il,
l N
Or\t}''''. P t"C
,_-\ ,t
•
bate Wanted: a.m.
( I - 2 5 - 4(P.m.
'
Requester:
Pho No;
3 - Erri2, =7312,
[3 Approved per applicable codes.
LJCorrections required prior to approval.
COMMENTS:
r)ne 5-cA‘TT fry)) R-A P
1
Inspetor:
Date: / -1 .C-44
ri REINSPECTION FEE REQUIRED, Prior to next inspection. fee must be
paid at 6300 Southcenter Blvd.. Suite 100. Call to schedule reinspection.
REVIEWED FOR
CODE COMPLIANCE
APPROVED
NOV 18 2014
City of Tukwila
BUILDING DIVISION
Air Cooled Condensers
Technical Guide
LK-ACCTB
February 2007
RECEIVED
CITY OF TUKWILA
NOV 1 2 2014
PERMIT CENTER
Sond M ami7Ordm 30,I:iiI
MIoog
•
TABLE OF CONTENTS
Overview 2, 3
Features & Options 3, 4
Three Solutions 5
Nomenclature 6
Condenser Selection Procedure 7-9
Altus"' Series
540 RPM 10-11
830 RPM 12-15
SoIusTM Series
EC Selection 16
Sound Data 16
Energy Comparison 17
Capacities 18
Specifications 19
1140 RPM Series
Features & Options 20
Capacities 21
Specifications 22
Dimensions 23
Fan Cycling 24-25
Control Panels for Electronic Controllers 26
Condenser Refrigerant Charge 26-28
Calculate Refrigerant Charge 28
Typical Condenser Wiring Diagrams 29-30
Sound Data 31
US
OVERVIEW
The Larkin Solus and Altus Series of direct drive air-
cooled condensers incorporate the latest advancements
in condenser technology to provide the quietest and
most efficient condensers in the industry.
SolusTM Series
Optimized sound and energy performance.
The Solus Series of condensers by Larkin offers the
optimum solution for sound and energy performance.
The Solus Series utilizes EC motor technology, which
provides unmatched sound and energy performance
and is the perfect solution for those applications where
low noise levels and significant energy savings are
essential for success.
Since product improvement is a continuing effort, we reserve the
right to make changes in specifications without notice.
AltusTM Series
Excellence in sound, energy and capacity solutions.
The Altus Series of condensers by Larkin utilizes 830 and
540 RPM motors and incorporates advanced features that
further improve sound levels and energy efficiencies, as
well as provide increased capacity in a smaller footprint.
In addition, there are new features designed to improve
serviceability, resulting in reduced maintenance costs.
The Altus Series is a perfect fit for applications requiring
low sound and energy levels and optimized capacities.
1140 Series
Larkin continues to offer the 1140 RPM Series for customers
seeking the most economical solution for their capacity
requirements.
Larkin condensers now incorporate a broader product
range with capacities ranging from 11 to 265 nominal tons
to address all applications.
All Larkin condenser coils incorporate the Floating Tube"
coil design, which virtually eliminates the possibility
of tube sheet leaks. Condenser coils are designed for
maximum heat transfer and are designed to operate with
CFC-free refrigerants.
As with all Larkin products, extensive testing of the
condenser ensures long and trouble -free service life.
2
0 2007, Heatcraft Refrigeration Products LLC
OVERVIEW (continued)
The condensers are designed for outdoor application
with housings available in aluminum finish and painted
or unpainted galvanized steel.
The condensers are available in either single or double
wide fan configurations.
The condenser design incorporates the features most
desired in air-cooled condensers. An extensive list of
options and fan cycle control panels complement the
condenser design and allow the condenser to match the
most rigid application requirements.
Solus'" Series Condenser with EC Motor Technology
The Floating Tube'' Coil Design
Dramatically Reduces Tube Sheet Leaks
FEATURES
Larkin's latest air-cooled condenser is available in
multiple product tiers and are designed with features to
meet exacting customer requirements.
Larkin Solus" Series of Condensers
Customers seeking optimum sound and energy
performance can select the Larkin Solus Series of
condensers with EC motor technology. EC motors
provide unparalleled sound and energy performance.
Features include:
• EC motor, swept fan blade and venturi incorporating
integrated variable speed technology
• Broad capacity range from 16 to 264 tons
• Aluminum housing for an attractive appearance and
corrosion protection, with painted galvanized steel,
or galvanized steel available as an option
• Side access panels allow for ease of cleaning coils
3
♦
Larkin AltusTM Series of Condensers
The Altus Series by Larkin utilizes 830 and 540
RPM motors and incorporates advanced features
that further improve sound levels and energy
efficiencies as well as provide increased capacity in
a smaller footprint. In addition, there are new features
designed to improve serviceability, resulting in reduced
maintenance costs. The Altus Series is a perfect fit for
applications requiring low sound and energy levels and
optimized capacities.
Features include:
• Direct drive fan motors in 830 or 540 RPM
• The patented QuietEdgeTM fan blade provides an
unprecedented sound level of 49.6 dBA (540 RPM @ 10 ft.)
• Larkin's patent -pending ServiceEaset" motor mount
feature, allows for ease of motor service and reduces
likelihood of damage to the coils during servicing
• Larkin condenser coils incorporate the latest
advancements in coil technology to provide
maximum capacity
• Broader product range to address all applications
— capacities ranging from 11 to 225 nominal tons
• Galvanized steel cabinet with an option for aluminum
or painted galvanized steel
• High efficiency, three-phase fan motors with ball
bearings and internal overload protection
1140 Series
For customers seeking an economical solution to
their capacity needs, Larkin now offers the 1140 RPM
Series with enhancements to improve capacity and
serviceability.
ServiceEaseT" Motor Mount System
Larkin's Patented QuietEdgeTM Fan Blade for
Improved Sound Performance
Features include:
• Direct drive fan motors
• Larkin's patent -pending ServiceEaseT" motor mount
• New, high efficiency condenser coil designed for
optimum performance
• Expanded product range from 15 to 249 nominal tons
• Galvanized steel as a standard housing, with an option
for aluminum or painted galvanized steel
• High efficiency, three-phase fan motors with ball
bearings and internal overload protection
All Standard Condensers
• 10 fins per inch spacing
• Modular design with models in both single and
double wide fan configurations
• All Larkin condensers incorporate the Floating Tube'
coil design, which virtually eliminates tube sheet Teaks
• Internal baffles provided between all fan cells
• Condensers up to 3 fans in length use 3/8" diameter
tube to minimize refrigerant charge. Condensers
4 or more fans in length use 1/2" diameter tube to
minimize refrigerant pressure drop
• Coated steel fan guards
• Weatherproof control panel with factory -mounted
door interrupt disconnect switch
• UL and UL listed for Canada
Available Options:
• Multi -circuiting at no additional charge
• Optional 8, 12 or 14 FPI spacing
• Fan -cycle control panels
• Alternate coil construction including polyester coated
fins, epoxy or phenolic coated fins and copper fins
• Hinged fan panels for ease of servicing (Altus and
1140 Series only)
• Side access panels
• Extended condenser legs for increased ground clearance
• Sealtite wiring
• Frame for shipping
4
•
Three solutions tailored to fit your unique needs.
Choose from the Solus, Altus or 1140 Series of air-cooled condensers by Larkin.
Choosing the Solus Series means you have an unmatched solution for capacity, sound
and energy efficiency while the Altus Series offers excellence in capacity, sound and
efficiency. Larkin continues to offer the 1140 RPM Series to meet high capacity needs
without concerns for low sound and high efficiency.
FEATURE
1140 SERIES
T _JL
ALTUS SERIES
SO_ LUS SERIES
[Motors a
�--_
L _ __ -.
Standard Motor
1140 RPM
830, 540 RPM
Variable Speed
EC Motors
P66MotorOption
v
v
(not required)
Cabinet
Standard Cabinet
Galvanized
Galvanized
Aluminum
Galvanized Option
(standard)
(standard)
v
Pre -Painted Galvanized Option
v
v
v
Aluminum Option
v
v
(standard)
Venturi Cover_____ _ _
�t
:�_
__
Standard Venturi
Removable
Removable
EC Tall Optimized
Hinged Option
v
v
-
• Fan Blades
Standard Blade
Standard
QuietEdge"
EC Optimized
[Motor Mount
[
ServiceEase"
EC Optimized
Standard Motor Mount
ServiceEaseT'
Warranty
__
T__
2-Year Warranty
v
v
v
3-Year Warranty - EC Motors
-
-
v
5-Year Warranty - Floating Tube'
v
v
v
5
NOMENCLATURE
L
T
L - Larkin
N H - S 04
f
N -Vintage
Motor
H - 1140 RPM, 1.5 HP
L - 830 RPM, 1.5 HP
X - 830 RPM, 1.0 HP
Q - 540 RPM, 0.5 HP
E - Solus EC Motor
A 050
--i- -I-
Standard Capacity
(MBH/°TD, R-22 @ 10 FPI)
Model Identifier
Width
S - Single Wide
D - Double Wide
Fans
01-14
6
Condenser Selection
Capacity for air-cooled condensers are based on Total Heat of Rejection (THR)
at the condenser. Total heat of rejection is equal to net refrigeration at the
evaporator (compressor capacity) plus the energy input into the refrigerant
by the compressor (heat of compression). The heat of compression will
vary depending on the compressor manufacturer, type of compressor
and the operating conditions of the compressor. Whenever possible, it is
recommended that you obtain the heat of compression value from the
compressor manufacturer.
If this is not available, the THR can be estimated using the following formula:
THR = (Compressor Capacity) * (Heat of Compression Factor, Tables 1 & 2)
Table 1 contains heat of compression factors for suction cooled compressors
and Table 2 contains factors for open drive compressors. For refrigeration
systems beyond the range of Tables 1 and 2, use the following equations to
estimate THR:
Open Compressors•
THR = Compressor Capacity (BTUH) + (2545) * (Break Horsepower, BHP)
Suction Cooled Compressors:
THR = Compressor Capacity (BTUH) + (3413 *KW)
The compressor capacity is effected by its altitude. If the condenser location
is above sea level, an additional correction is required to the THR, as follows:
THR (altitude) =THR * Altitude Correction Factor, Table 3
Selection Example
Compressor capacity:
Evaporator temperature:
Condensing temperature:
Ambient temperature
Refrigerant:
Compressor type:
Condenser type:
Condenser altitude:
350,000
+25° F
115° F
95° F
R-22
Semi -hermetic, suction cooled
540 RPM, one row of fans
1,000 feet
Step 1: Estimate Condenser THR
From Table 1 for suction cooled compressors, at +25° F suction and 115° F
condensing temperature, select a heat of compressor factor of 1.335.
THR = Compressor Capacity * Heat of Compression Factor
= 350,000 * 1.335
= 467,250
Step 2: Correct for Altitude
From Table 3 obtain an altitude correction factor of 1.02 for 1,000 feet.
THR =THR (from step 1) * Altitude Correction Factor (design)
= 467,250 * 1.02
= 476,595
Step 3: Calculate Design Condenser T.D.
Design Condenser T.D. = Condensing Temp - AmbientTemp
=115 - 95
= 20° T.D.
Step 4: Condenser Selection
Condenser capacities for condensers with one row of fans at 540 RPM are
located in Table 6. These capacities are given in MBH/°TD. Convert the THR
calculated in step 2 to MBH/*TD by dividing by 1,000 to get THR in MBH.
Then divide the THR by the design TD to get MBH/°TD.
THR (MBH) = 476,595 / 1,000 = 476.6
THR (MBH/°TD) = 476.6 / 20 = 23.83
Locate the 10 FPI column for R-22 refrigerant and read down until you locate a
value equal to or just larger than 23.83.This value is 25.9. Read horizontally to
the left to obtain a condenser model of LNQ-S05-A026.
Step 5: Calculate Actual T.D. and Condensing Temperature
The actual condenser T.D. can be calculated by dividing the design THR by
the condenser rating.
Actual T.D. =THR (Design) / (Rating @ 1°T.D.)
= 476.6 / 25.9
=18.4°F T.D.
The actual condensing temperature is the actual T.D. plus the ambient
temperature.
Actual Condensing Temperature = (Actual T.D.) + (Ambient)
= 18.4 + 95
= 113.4°F
Table 1. Heat of Compression Factor for Suction Cooled Compressors.
Suction
Temp. °F
-40°
-30°
-20°
-10°
0°
5°
10°
15°
20°
25°
30°
40°
50°
Condensing Temperature °F
90° 100° 110° 120°
1.56
1.49
1.43
1.38
1.34
1.31
1.29
1.26
1.24
1.22
1.2
1.17
1.13
1.63
1.55
1.49
1,43
1.38
1.36
1.34
1.31
1.28
1.26
1.24
1.2
1.16
1.72
1.62
1.55
1.49
1.43
1.41
1.39
1.36
1.33
1.31
1.28
1.24
1.2
1.81
1.7
1.62
1,55
1.49
1.48
1.44
1.41
1.38
1.36
1.33
1.28
1.24
130°
1.94
1.8
1.7
1.63
1.56
1.55
1.52
1.48
1.44
1.42
1.39
1.33
1.28
Table 2. Heat of Compression Factor for Open Drive Compressors
Evaporator
_ _Condensing
Temperature
°F _ _
Temp. °F
90°
100°
110°
120°
130°
140°
-30°
1.37
1.42
1.47
-
-
-
-20°
1.33
1.37
1.42
1.47
-
-
-10°
1.28
1.32
1.37
1.42
1.47
-
0°
1.24
1.28
1.32
1.37
1.41
1.47
5°
1.23
1.26
1.3
1.35
1.39
1.45
10°
1.21
1.24
1.28
1.32
1.36
1.42
15°
1.19
1.22
1.26
1.3
1.34
1.4
20°
1.17
1.2
1.24
1.28
1.32
1.37
25°
1.16
1.19
1.22
1.26
1.3
1.35
30°
1.14
1.17
1.2
1.24
1.27
1.32
40°
1.12
1.15
1.17
1.2
1.23
1.28
50°
1.09
1.12
1.14
1.17
1.2
1.24
Table 3. Altitude Correction Factors.
_ Altitude _ 1 _ Correction Factor
0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
1
1.02
1.05
1.07
1.1
1.12
1.15
1.17
7
Multi -Circuiting Selection
Multi -Circuiting Selection Procedure
The air-cooled condensers are available with more than one
refrigerant circuit. The condenser will be factory assembled with the
condenser coil divided into individual refrigerant circuits, each sized
Multi -Circuit Condenser Selection
for its own specific application. Each circuit is supplied with its own
inlet and outlet connections, individually labeled.
Given four suction cooled compressors with conditions shown in Table with two rows of fans. The condenser location is at 3,000 ft. and the
4. The condenser shall have 830, 1.0 RPM fan motors, design ambient is 95°F.
Selection Procedure
Step 1: Input customer data in Table 4 in columns 1, 2, 3, 4
and 5.
Step 2: From Table 1, select the heat of compression factor
for suction cooled compressors and input into column
#6.
Step 3: From Table 3 obtain the altitude correction factor
and input into column #7.
Step 4: From Table 5 obtain the refrigerant capacity factor and
input into column #8.
Step 5: Calculate the design T.D. for each circuit by
subtracting the ambient temperature from the circuit
design condensing temperature and input into
column #9.
T.D. = Design Condensing Temperature - Ambient Temperature
Step 6: Calculate the design THR / °T.D. for each circuit.
Multiply column #5 by column #6 and column #7 to
calculate the THR for each circuit. Divide the result by
the refrigerant correction factor, column #8 to convert
the capacities to a common refrigerant. Divide the
result by the design T.D., column #9 to calculate the
design THR / °T.D. and input into column #10.
Design THR / °T.D. = Compressor Capacity (#5) * Heat of Compressor Factor (#6) x Altitude Factor (#7)
Refrigerant Capacity Factor (#8) * Design T.D. (#9)
Example for Circuit #1:
Design THR / °T.D. = 235,000 * 1.31 * 1.07
1.02 x 15
= 21,529 BTUH / °T.D.
Step 7: Add the design THR / °T.D. for each circuit in column
#10, to get a total of 39,578 BTUH / °T.D. Divide this
total by 1,000 to get 39.6 MBH / °T.D.
Step 8: From Table 8 for two rows of condenser fans with
830 RPM, 1.0 HP fan motors, locate the column for
R-404A capacity with 10 FPI. Read down the column
until you get to a capacity equal to or greater than 39.6
MBH / °T.D. This value is 44.5 which corresponds to a
LNX-D06-A045. From Table #9 obtain the total
number of feeds available as 56.
8
Multi -Circuiting Condenser
Table 4. Condenser Multi -Circuit Selection
1 2
Circuit Evap.
Name Temp. °F
3
Design
Cond.
Temp. °F
4
Comp.
Refrig.
Type
22
5 X 6
' Heat of
Cap. X Com
BTUH press.
Factor
235,000 X 1.31
X
X
X
7
Alti-
tude
Factor
1.07
- 8
Refrig.
± Cap
Factor
- 1.02
-
-
÷
9
Design
Cond.
T.D.
15
=
=
_!
=
10
Design
THR/°TD
21,529
11
No. of
Feeds
per Circ.
31
12 13
Actual 1 Actual
Cond. Cond.
T.D. Temp. °F
13.1 108.1
1
25
110
2
20 .
110 ..
` 134a
'"61,000 3X; ,".:.1 33 '
X
1.07.
- .97
—
15
=
5,966`
8
141':
109.1?
3
-10
105
22
31,000 X 1.46
X
1.07
- 1.02
-
10
=
4,748
7
8.5
103.5
4
-20
105'
22
.46,000 X 1.52
X
' 1.07
.- 1.02 .
=
-10
=
7,335
10:.
9.2
104.2:;'.
TOTAL 1 = 1 39,578 1 56
39,578 / 1,000 = 39.6 MBH/ °TD
Step 9: Determine the number of feeds per circuit. Divide the design THR / °T.D. in column #10 by the total capacity required (39,578) and
multiply this result by the number of feeds available, which is 56. Round this value to the nearest integer and place in column #11
Add the individual feeds per circuit to get a total number of feeds for the condenser. This total
must equal the total number of feeds available for the condenser (56).
Number of = Design THR / °T.D.(#10) * Number of Circuits Available (56)
feeds/circuit Total Capacity Required (39,578)
Step 10: Calculate actual condensing T.D., (ATD):
ATD = Design T.D. (#9) * Design THR/°T.D. (#10) * Number of Feeds Available (56)
Number Feeds / CIR (#11) * Condenser Capacity / °T.D. (Step #8) * 1,000
Example for Circuit #1:
ATD = 15 * 21,529 x 56 — 13.1 °F
31 * 44.5 * 1,000
Input these T.D. values in column #12.
Step 11: Calculate the actual condensing temperature. Actual condensing temperature is equal to the actual condensing T.D., column #12
plus the design ambient (95°). Input these values in Column #13. If the actual condensing temperature for each circuit is too high,
it may be necessary to adjust the number of feeds per circuit or to select the next larger condenser size and recalculate the number
of feeds per circuit.
Table 5.
Refrigerant Capacity Factor.
Refrigerant Capacity Factor
R-22
R-134a
R-404A
R-410A
R-502
R-507:
1.02
0.97
1
1.02
1
9
► lf�Z•�9im.
CONDENSER CAPACITY
Table 6. Altus LNQ Models, 540 RPM, 0.5 HP, 30" Fan Diameter
LNQ 540
Model
LNQ-S01-A005
8 FPI
4.6
R-22 1
MBH /
10 FPI
5.2
R-410A
1°TD
12 FPI
5.6
14 FPI
5.9
8 FPI
4.6
R-404A
MBH /
10 FPI
5.1
1°TD
12 FPI
5.5
14 FPI
5.8
LNQ 501 A006
5.5
6;1
6:4
6.6
5.4 `
5.9
6.2
6.5
LNQ-S02-A008
7.2
8.0
8.7
9.1
7.0
7.8
8.5
8.9
LNQ-S02-A010
9.4
10.3
10.8
11.8
9.2
10.1
10.6
11.6
LNQ-502-A011
10.8
11.5
11.9
12.3
10.6
11.2
11.7
12.0
LNQ-S03-A016
14.1
15.6
16.2
16.9
13.8
15.2
15.9
16.6
LNQ-503-A017
16.2
17.2
17.9
19.8
15.9
16.9
17.5
19.4
LNQ-SO4-A021
18.8
20.7
21.6
23.5
18.4 .
20.3-
21.2
23.0:
LNQ-SO4-A023
21.6
22.9
23.8
24.5
21.2
22.4
23.3
24.0
LNQ-S05-A026
23.5
25.9
27.0
29.3
23.1
25.4
26.4
28.8,
LNQ-S05-A029
27.0
28.6
29.8
30.7
26.5
28.1
29.2
30.1
LNQ-S06-A034
32.4
34.4
35.7 -
36.8 - =
_ 31.8
33.7
35.0
36.1
LNQ-S07-A042
38.4
41.6
42.8
44.3
37.7
40.7
41.9
43.4
LNQ-D04-A016
14.3
16.0
17:3
18.2
14.0
15.6
16.9
17.9
LNQ-D04-A021
18.8
20.7
21.6
23.6
18.4
20.3
21.2
23.2
LNQ-D04-A023
21.6
22.9
23.8
24.5
21.2
22.4
23.3
24.0
LNQ-D06-A031
28.2
31.0
32.4
33.8
27.6
30.4
31.8
33.1
LNQ-D06-A034
32.4
34.4
35.7
39.5.
31.8
33.7
35.0
38.7
LNQ-D08-A041
37.6
41.4
43.2
47.0
36.9
40.6
42.3
46.1
LNQ-D08-A046
43.2
45.8
47.6
49.0
42.4
44.9
46.7
48.1
LNQ-D10-A052
47.0
51.8
54.0
58.7
46.1
50.7
52.9
57.5
LNQ-D10-A057
54.0
57.3
59.5
61.3
53.0
56.1
58.3
60.1
LNQ-D12-A069
64.8
68.7
71.4
73.6
63.6
67.3
70.0
72.1
LNQ-D14-A083
76.8
83.1
85.5
88.6
75.3
81.5
83.8
86.8
BOLD indicates standard model capacity.
10
CONDENSER SPECIFICATIONS
Table 7. Altus LNQ Models, 540 RPM, 0.5 HP, 30" Fan Diameter
LNQ 540
Model
LNQ-501-A005
i CFM
5,400
208-230/3/60
FLA
3.5
MCA
15.0
MOPD
15
FLA
1.8
460/3/60
MCA
15.0
MOPD
15
Unit
kW
0.4
Conn.
(in.)
13/8
Max.
No.
of
Feeds
7
Approx.
Net
Weight
(Ibs)
330
LNQ-S01-A006
5,200
3.5
15.0 "°
` 15
1.8
15 0
15:
0.4
1 3/8
14
360
LNQ-502-A008
11,200
7.0
15.0
15
3.5
15.0
15
0.9
13/8
14
580
LNQ-502-A010
10,800
7.0
15.0
15
3.5
15.0
15
0.9
15/8
21
630
LNQ-502-A011
10,400
7.0
15.0
15
3.5
15.0
15
0.9
2 1/8
28
680
LNQ-S03-A016
16,100
10.5
15.0 -
20
5.3
15 0
15 �
1.3
'. 2 1/8
21
930i
LNQ-503-A017
15,600
10.5
15.0
20
5.3
15.0
15
1.3
21/8
28
1,000
LNQ-SO4-A021
21,500
14.0
15.0
20
7.0
:
15.0
15
a _3
1.7
21/8 ;
21
1"210:
LNQ-504-A023
20,800
14.0
15.0
20
7.0
15.0
15
1.7
2 5/8
28
1,310
LNQ-S05-A026:
26,900
17.5
20.0
25
8.8
15.0
15
2.2
2 5/8
21
1,510
LNQ-505-A029
26,000
17.5
20.0
25
8.8
15.0
15
2.2
2 5/8
28
1,640
LNQ-506-A034
31,200
21.0
- 21.9.
30
10.5
15.0
15
2.6
25/8
, 28
'
1,950
LNQ-507-A042
36,400
24.5
25.4
35
12.3
15.0
15
3.1
2 @ 2 5/8
28
2,240
LNQ-D04-A016
22,300
14.0
15.0
20
7.0
15.0
15 `
1.7
2 @ 1 3/8
28
1,240
LNQ-D04-A021
21,500
14.0
15.0
20
7.0
15.0
15
1.7
2 @ 1 5/8
42
1,340
LNQ-D04-A023
20,800
14.0
15.0
20
7.0
15.0 ,
15
1.7
2 @ 2 1/8
56
1,440
LNQ-D06-A031
32,300
21.0
21.9
30
10.5
15.0
15
2.6
2 @ 2 1/8
42
1,990
LNQ-D06-A034
31,200
21.0
21.9
30
10.5
15.0
a. 15
2.6
2 @ 2 1 /8 ,
:.',56
2,140
LNQ-D08-A041
43,000
28.0
28.9
35
14.0
15.0
15
3.5
2 @ 21 /8
42
2,630
LNQ-D08-A046
41,600
28.0
28.9
35
14.0
15.0
15
3.5
2 @ 2 5/8
56
2,836
LNQ-D10-A052
53,700
35.0
35.9
45
17.5
20.0
20
4.4
2 @ 2 5/8
42
3,290
LNQ-D10-A057
52,100
35.0
35.9
45
17.5
20.0
20
4.4
2 @ 2 5/8
56
3,540
LNQ-D12-A069
62,500
42.0
42.9
50
21.0
21.4
25
5.2
2 @ 2 5/8
56
4,230
LNQ-D14-A083
72,900
49.0
49.9
50 ,
24.5
24.9
25
6.1
4 @ 2 5/8
56
4,910'
riTninWIMI 7
11
=FZtlwQ
CONDENSER CAPACITY
Table 8. Altus LNX Models, 830 RPM, 1.0 HP, 30" Fan Diameter
LNX
830
Model
LNX-S01-A006
8 FPI
5.6
R-221
MBH /
10 FPI
6.4
R-410A
1°TD
12 FPI
7.0
14 FPI
7.4
8 FPI
5.5
R-404A
MBH /
10 FPI
6.2
1°TD
12 FPI
6.8
14 FPI
7.3
LNX-S01-A008
6.8
7.5
8.1
8.4
6.6
7.4
7.9
8.3
LNX-502-A010
8.8
9.8
10.6
11.3
8.6
9.6
10.4
11.0
LNX-S02-A013
12.0
13.1
13.8
14.8
11.8
12.8
13.6
14.5
LNX-S02-A015
14.0
15.1
15.7
16.0
13.7
14.8
15.3
15.7
LNX S03 A020
18.0
19.7
20.8
21.8.
17.7
19.3
20.4
21.4
LNX-S03-A023
21.0
22.7
23.5
25.3
20.5
22.3
23.0
24.8
LNX-504-A026
24.1
26.3
27.7
29.3
23.6
25.7
27.1
28.8
LNX-504-A030
27.9
30.3
31.3
32.0
27.4
29.7
30.7
31.4
LNX-S05-A033
30.1
32.8
34.6
36.7
29.5.
32.1
33.9
36.0
LNX-505-A038
34.9
37.8
39.2
40.1
34.2
37.1
38.4
39.3
LNX-506-A045
41.9
45.4
47.0
48.1
41.1
44.5
46.1
47.1
LNX-507-A052
47.7
52.0
54.8
56.1
46.8
51.0
53.7
55.0
LNX-D04-A020
17.5
19.6
21.2
22.5
17.2
19.2
20.8
22.0
LNX-D04-A026
24.1
26.2
27.7
29.7
23.6
25.7
27.1
29.1
LNX-D04-A030
27.9
30.3
31.3
32.0
27.4
29.7
30.7
31.4
LNX-D06-A039
36.1
39.4
41.5
43.7
35.4
38.6
40.7
42.8
LNX-D06-A045
41.9
45.4
47.0
50.6
41.1
44.5 '
46.1
49.6
LNX-D08-A052
48.1
52.5
55.4
58.6
47.1
51.4
54.3
57.5
LNX-D08-A061
55.9
60.6
62.7
64.1
54.8
59.3
61.4
62.8
LNX-D10-A066
60.1
65.6
69.2
73.5
58.9
64.3
67.8
72.0
LNX-D10-A076
69.9
75.7
78.3
80.1
68.5
74.2
76.8
78.5
LNX-D12-A091
83.8
90.8
94.0
96.1
82.1
89.0
92.1
94.2
LNX-D 14-A104
95.5
104.1
109.6
112.2
93.6
102.0
107.5
110.1
BOLD indicates standard model capacity.
12
CONDENSER SPECIFICATIONS
Table 9. Altus LNX Models, 830 RPM, 1.0 HP, 30" Fan Diameter
LNX
830`
Model
LNX-S01-A006
CFM
7,600
208-230/3160
FLA
4.8
MCA
15.0
MOPD
15
FLA
2.4
460/3/60
MCA
15.0
MOPD
15
Unit
kW
1.1
Conn.
(in.)
13/8
Max.
No.
of
Feeds
7
Approx.
Net
Weight
(Ibs)
330
LNX-S01-A008
7,300
4.8
15.0
15
2.4
15.0
15
1.1
1 3/8
14
360
LNX-502-A010
15,900
9.6
15.0
20
4.8
15.0
15
2.2
13/8
14
580
LNX-S02-A013
15,200
9.6
15.0
20
4.8
15.0
15
2.2
1 5/8
21
630
LNX-502-A015
14,700
9.6
15.0
20
4.8
15.0
15
2.2
2 1/8
28
680
LNX-S03-A020
22,900
14.4
20.0
25
7.2
15.0
15.
3.4
21/8
21
930
LNX-503-A023
22,000
14.4
20.0
25
7.2
15.0
15
3.4
21/8
28
1,000
LNX-SO4-A026
29,800
19.2
20.4
30
9.6
15.0 .
15
4.5
2 1/8
21
1,210'
LNX-504-A030
28,400
19.2
20.4
30
9.6
15.0
15
4.5
2 5/8
28
1,310
LNX-S05-A033
37,300
24.0
25.2
35
12.0
15.0
15
5.6
2 5/8
21
1,510
LNX-505-A038
35,500
24.0
25.2
35
12.0
15.0
15
5.6
2 5/8
28
1,640
LNX-S06-A045
42,600
28.8
30.0
40
14.4
20.0
20
6.7
2 5/8
28
1,950
LNX-507-A052
49,700
33.6
34.8
45
16.8
20.0
20
7.8
2 @ 2 5/8
28
2,240
LNX-D04-A020
31,700
19.2
20.4
30
9.6
15.0
15
4.5
2 @ 1 3/8
28
1,240 'e
LNX-D04-A026
30,500
19.2
20.4
30
9.6
15.0
15
4.5
2 @ 1 5/8
42
1,340
LNX-D04-A030
29,300
19.2
20.4
30
9.6
15.0
15
4.5
2 @ 2.1/8
- 56
1,440
LNX-D06-A039
45,700
28.8
30.0
40
14.4
20.0
20
6.7
2 @ 2 1/8
42
1,990
LNX-D06-A045
44,000
28.8
30.0
40
14.4
20.0
20
6.7
2 @ 2`1/8
56
2,140
LNX-D08-A052
59,700
38.4
39.6
50
19.2
20.0
25
8.9
2 @ 2 1/8
42
2,630
LNX-D08-A061
56,800
38.4
39.6
50
19.2
20.0
25
8.9
2 @ 2 5/8
56
2,830
LNX-D10-A066
74,600
48.0
49.2
60
24.0
24.6
30
11.2
2 @ 2 5/8
42
3,290
LNX-D10-A076
71,000
48.0
49.2
60
24.0
24.6
30
11.2
2 @ 2 5/8
56
3,540,
LNX-D12-A091
85,200
57.6
58.8
70
28.8
29.4
35
13.4
2 @ 2 5/8
56
4,230
LNX-D14-A104
99,400
67.2
68.4
80
33.6
34.2
40
15.6
4 @ 2 5/8
56
4,910
nmm
13
ilizilln
CONDENSER CAPACITY
Table 10. Altus LNL Models, 830 RPM, 1.5 HP, 30" Fan Diameter
LNL ' 830
Model
LNL-S01-A007
8 FPI
5.9
R-22 I
MBH/1°TD
10 FPI
6.7
R-410A
12 FPI
7.3
14 FPI
7.9
8 FPI
5.8
R-404A
MBH/1°TD
10 FPI
6.6
12 FPI
7.2
14 FPI
7.7
LNL-S01-A008
7.2
8.0
86
9.0
7.0
7.8 ..,
8.4
8.8
LNL-502-A010
9.1
10.1
11.0
11.7
8.9
9.9
10.8
11.4
LNL-S02-A014
12.6
13.9
14.9
15.7
12.4
13.6
14.6
15.4
LNL-502-A016
15.0
16.1
16.8
17.6
14.7
15.8
16.5
17.3
LNL-S03-A021
19.0
20.9
22.3
23.4
18.6
20.5
_ ,- 21.8
23.0
LNL-S03-A024
22.5
24.2
25.2
26.9
22.0
23.8
24.7
26.3
LNL-SO4-A028
25.3
27.8
29.7
.:
31.2
24.8
27.3
29.1
30.6
LNL-504-A032
30.0
32.3
33.6
35.2
29.4
31.7
32.9
34.5
LNL-505-A035
32.1,
35.5
37.4
39.0
31.4
;; 34.7
36.6
, 38.2
LNL-505-A042
38.4
41.6
43.4
44.7
37.7
40.8
42.5
43.8
LNL S06 A050
46.1
49.9
52.T
53.6
45.2`
48.9
514.0
52.6
LNL-507-A055
50.5
55.0
58.0
60.2
49.5
53.9
56.8
59.0
LNL-D04-A020
18.1
20.2
22.0
23.3
17.7
19.8
21.5
22.9
LNL-D04-A028
25.3
27.8
29.7
31.4
24.8
27.3
29.1
30.7
LNL-D04-A032
30.0
32.3
33.6
35.2
29.4 '
'31.7 "°
, 32.9
34.5
LNL-D06-A042
37.9
41.8
44.5
46.9
37.2
40.9
43.7
45.9
•
LNL-D06-A048
45.0
48.4
50.4
53.7
44.1 ' '
47.5
49.4
. 52.7
LNL-D08-A056
50.6
55.7
59.4
62.4
49.6
54.6
58.3
61.1
LNL-D08-A065
60.0
64.6
67.2
70.4
58.8
63.3
65.8
69.0
'.
LNL-D10-A071
64.2
70.9
74.7
78.0
62.9
69.5
73.2
76.5
LNL-D10-A083
76.9
83.1
86.8
89.4
75.3
81.5
85.0
87.6
LNL-D12-A100
90.4
99.8
104.1
107.3
92.2
97.8
102.0
105.1
LNL-D14-A110
101.1
110.0
116.0
120.3
99.1
107.9
113.7
117.9
BOLD indicates standard model capacity.
14
CONDENSER SPECIFICATIONS
Table 11. Altus LNL Models, 830 RPM, 1.5 HP, 30" Fan Diameter
LNL
830
•
Model
LNL-S01-A007
CFM
8,400
208-230/3/60
FLA
6.6
MCA
15.0
MOPD
25
FLA
3.3
460/3/60
MCA
15.0
MOPD
15
FLA
2.6
575/3/60
MCA
15.0
MOPD
15
Unit
kW
1.4
Conn.
(in.)
13/8
Max.
No.
of
Feeds
7
Approx.
Net
Weight
(Ibs)
330
LNL-501-A008
8,000
6.6
15.0
25 -
3.3
15.0
15
2.6
15.0
15
1.4
1 3/8
14
360'`1t
LNL-S02-A010
17,500
13.2
15.0
30
6.6
15.0
15
5.2
15.0
15
2.7
13/8
14
580
LNL-S02-A014 :
16,700
13.2
15.0
30
6.6
15.0
15
5.2
15.0
15
2.7
1 5/8
21
630
LNL-502-A016
16,100
13.2
15.0
30
6.6
15.0
15
5.2
15.0
15
2.7
21/8
28
680
LNL-S03-A021 _
25,100
19.8
21.5 `
'35
9.9
15.0
15
7.8
15.0
15
41.
21/8
21
930
LNL-503-A024
24,100
19.8
21.5
35
9.9
15.0
15
7.8
15.0
15
4.1
21/8
28
1,000
LNL-SO4-A028
32,800
26.4
28.1
45
13.2
15.0
20
10.4
15.0
15
5.4
21/8
21
1,210
LNL-504-A032
31,200
26.4
28.1
45
13.2
15.0
20
10.4
15.0
15
5.4
25/8
28
1,310
LNL-505-A035'=
41,000
33.0
34.7
50.-
16.5
20.0
25
13.0
15.0
'20
6.8`
25/8
��` 21
' 1510
LNL-505-A042
39,100
33.0
34.7
50
16.5
20.0
25
13.0
15.0
20
6.8
2 5/8
28
1,640
LNL-S06-A050
46,900
39.6
41.3
50
19.8
20.6
25
15.6
20.0
20
8.1
25/8
28
1,950
LNL-507-A055
54,700
46.2
47.9
60
23.1
23.9
30
18.2
20.0
25
9.5
2 @ 2 5/8
28
2,240
LNL-D04-A020
35,000
26.4
28.1
45
13.2
15.0
20
10.4
15.0
15
5.4
2 @ 1 3/8
28
1,240
LNL-D04-A028
33,500
26.4
28.1
45
13.2
15.0
20
10.4
15.0
15
5.4
2 @ 1 5/8
42
1,340
LNL-D04-A032
32,100 '
26.4
28.1
45 `'
13.2
15.0
20
10.4
15.0
15
5.4
2 @ 2 1/8
56,
1
LNL-D06-A042
50,200
39.6
41.3
50
19.8
20.6
25
15.6
20.0
20
8.1
2 @ 2 1/8
42
1,990
LNL-D06-A048
48,200
39.6
41.3
50
19.8`
20.6
25
15.6
20.0"
20
8.1
2@21/8
56
2,140
LNL-D08-A056
65,600
52.8
54.5
70
26.4
27.2
35
20.8
21.5
25
10.8
2 @ 2 1/8
42
2,630
LNL-D08-A065
62,500
52.8
54.5
70
26.4
27.2
35
20.8
21.5
25
10.8
2 @ 2 5/8
56
2,830
LNL-D10-A071
82,000
66.0
67.7
80
33.0
33.8
40
26.0
26.7
30
13.5
2 @ 2 5/8
42
3,290
LNL-D10-A083
78,100
66.0
67.7
80
33.0
33.8
40
26.0
26.7
30
13.5
2 @ 2 5/8
56
3,540
LNL-D12-A100
93,700
79.2
80.9
90
39.6
40.4
45
31.2
31.9
35
16.2
2 @ 2 5/8
56
4,230
LNL-D14-A110
109,300
92.4
94.1
110
46.2
47.0
50
36.4
37.1
40
18.9
4 @ 2 5/8
56
4,910
Ua. M
15
i Llk
Larkin Solus Series Selection Tables
The new Larkin Solus Series of air-cooled condensers
incorporates EC motor technology to provide the quietest
and most efficient condensers in the industry, using
integrated variable speed technology.
Simplicity: Variable speed without the complexity
The Larkin Solus Series is a complete system that incorporates
an EC motor, integrated drive and control electronics,
optimized swept motor blade and venturi panel in one
simple package. Variable speed is accomplished without the
complexities typically associated with Variable Frequency
Drives.
Flexibility: Maximum efficiency, minimum sound,
capacity when you need it
The Solus Series condensers' integrated variable speed
capability allows optimization to your operating conditions;
at higher speeds on hot summer afternoons to maintain
capacity or at lower speeds at night to meet a local sound
ordinance. Whatever your requirements, the Larkin Solus
Series can be selected and programmed to your specific
needs; whether it is lower energy costs, lower sound or both.
Reliability:The highest quality backed by industry -
leading warranties
We are confident in the reliability of the EC motor that we
are providing an unprecedented 3-year warranty on the EC
motor (2-year warranty on the unit) so you can be assured of
worry -free operation.
BS
ec
75
70
jg
se
as
Protection at every level
The EC motors have several built-in features that protect
against locked -rotors, under -voltage protection and
phase failure.
Variable Speed Operation
The Solus Series condensers provide variable speed
operation automatically; providing dramatically lower sound
and energy levels than would be observed with condensers
using traditional AC motors.
Typical performance of a Solus Series condenser at various
loads versus a 540 RPM or 1140 RPM condenser is shown in
the charts on the next page.
Model Selection
Selecting the right Larkin Solus Series unit for your needs
is easier than you think, and is just as easy as selecting a
standard unit.
Simply use Table 12 to find the model and fins per inch
required to meet your capacity needs.
Selecting condensers with specific sound or energy levels
The variable speed nature allows selection to meet maximum
sound or energy usage levels.
To select condensers with these goals in mind, please contact
your Larkin sales representative. They can help you select the
appropriate model for your specific requirements.
Solus Series Sound Data (dBA @ 10 ft.)
-F�.LNE (iin0 RPM) --10" Lr' (830 RPM)
ENE (030 RPM) "" ' LM (420 RPM) I
LNC
1030
LNE
LNE 630 J
LNE 420
0
2
NtiR7bef or FaifS
10
12
14
Fans
1
BNE
1030
RPM
66.9
BNE
830
RPM
62.0
BNE
630
RPM
52.9
BNE
420
RPM
45.3
2
69.9
65.0
55.9
48.3
3
71.7
66.8
57.7
50.1
4
72.9
68.0
58.9
51.3
5
73.9
69.0
59.9
52.3
6
74.7;
69.8
60.7
:_53.1
7
75.4
70.5
61.4
53.8
8
75.9
71.0
61.9
' 54.3,_
10
76.9
72.0
62.9
55.3
12
77.7
72.8
63.7
56.1
14
78.4
73.5
64.4
56.8
16
Power Consumption (kW)
25
20
15
10
Power Consumption Comparison
10 Fan EC Motor Condenser vs.
14 Fan 540 RPM Condenser and 10 Fan 1140 RPM Condenser
(Capacity - 83 MBH/°TD)
Typical Operating
Range
14 Fan 540 RPM
(83.1 MBH/ TD) �<
10 Fan 1140 RPM
(82 6 MBH/°TD1.
• 11T
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
% of Load Requirement
10 Fan EC Motor Sound Production at Various
Loads
60%
70%
80%
90%
1 00%
Percent of Max. Load
30%
40%
50%
RPM
215
313
407
511
630
748
892
1,030
dBA @ 10 ft
49.5
51.8
55
58.4
62.9
67.8
74.8
76.9
17
itijIL
CONDENSER CAPACITY
Table 12. Solus LNE Models, 2.2 kW, 31.5" Fan Diameter
LNE
EC"
Model
LNE-501-A008
8 FPI
6.8
R-22 I
MBH
10 FPI
7.7
R-410A
1°TD
12 FPI
8.5
14 FPI
9.1
8 FPI
6.6
R-404A
MBH 11°TD
10 FPI
7.6
12 FPI
8.3
14 FPI
9.0
LNE-501-A009
8.3
9.3
10.0
10.6
8.1
9.1
9.8
10.4
LNE-S 02-A 011
10.2
11.3
12.4
13.1
10.0
11.1
12.1
12.9
LNE-502-A015
13.9
15.4
16.5
17.3 ,
13.6
15.1
16.2
17.0 .:
LNE-502-A018
16.6
18.1
19.2
20.3
16.3
17.8
18.8
19.9
LNE-503-A023
20.9
23.1
24.8
25.9
20A
22.7
24.3
25.4
LNE-503-A027
24.9
27.2
28.7
31.7
24.4
26.7
28.2
31.1
LNE-504-A031
27.8
30.8
33.0
34.6
272
30.2
32.4
33.9
LNE-504-A036
33.2
36.3
38.3
40.6
32.6
35.5
37.5
39.8
LNE-S05-A039
35.6
39.3
41.6
43.8
34.9
38.5
40.8
42.9
LNE-S05-A047
43.0
46.6
48.8
51.5
42.1
45.7
47.8
50.5
LNE-506-A056
51.6
56.0
58.6
61.8
50.5
54.8
57.4
60.5
LNE-507-A065
58.7
64.6
68.6
71.6
57.6
63.3
67.3
70.2
LNE-D04-A023
20.4
22.7
24.8
26.2
19.9
22.2
24.3
25.7
LNE-D04-A031
27.8
30.8
33.1
34.6
27.2
30.2
32.4
33.9
LNE-D04-A036
33.2
36.3
38,3
40.6
32.6
35.5
'37.5
39.8 xr;
LNE-D06-A046
41.7
46.2
49.5
51.9
40.9
45.3
48.6
50.8
LNE-D06-A054
49.8
54.4
57.4
63.4
48.8
53.3
56.3
62.2
LNE-D08-A062
55.6
61.7
66.1
69.2
54.5
60.5
64.7
67.8
LNE-D08-A073
66.5
72.5
76.6
81.3
65.2
71.1
75.1
79.7
LNE-D10-A079
71.1
78.6
83.2
87.5
69.7
77.0
81.6
85.8
LNE-D10-A093
85.9
93.3
97.6
103.0
84.2
91.4
95.7
100.9'
LNE-D 12-A 112
103.1
111.9
117.1
123.6
101.0
109.7
114.8
121.1
LNE-D 14-A 129
117.5
129.2
137.2
143.1
115.2
126.7
134.5
140.3
BOLD indicates standard model capacity.
18
CONDENSER SPECIFICATIONS
Table 13. Solos LNE Models, 2.2 kW, 31.5" Fan Diameter
LNE
EC
-
Model
LNE-501-A008
CFM
11,000
FLA
7.0
208-230/3/60
MCA
15.0
MOPD
25
FLA
3.5
460/3/60
MCA
15.0
MOPD
15
Unit
kW
2.2
Conn.
(in.)
13/8
Max.
Number
of Feeds
7
Approx.
Net
Weight
(Ibs)
330
LNE-501-A009
10,500
7.0
15.0
25
3.5
15.0
15
2.2
13/8
14
360
LNE-502-A011
23,400
14.0
20.0
35
7.0
15.0
15
4.4
13/8
14
590
LNE-502-A015
22,000
14.0
20.0
35
7.0
15.0
15
4.4
1 5/8
21
640
LNE-S02-A018
20,900
14.0
20.0
35
7.0
15.0
15
4.4
21/8
28
690
LNE-S03-A023
33,100
21.0
22.8
40
10.5
15.0
20
6.6
21/8
21
930
LNE-503-A027
31,400
21.0
22.8
40
10.5
15.0
20
6.6
21/8
28
1,010
LNE-SO4-A031
42,600
28.0
29.8 ..
45
14.0
15.0
20 ,
8.8
21/8
21
1,220
LNE-504-A036
40,000
28.0
29.8
45
14.0
15.0
20
8.8
2 5/8
28
1,320
LNE-505-A039
53,200
35.0
36.8
50
17.5
20.0 „
25 -
11.0
25/8
21
1,520
LNE-505-A047
50,000
35.0
36.8
50
17.5
20.0
25
11.0
2 5/8
28
1,650
LNE-506-A056
60,000
42.0
43.8
60
21.0
21.9
30
13.2
2 5/8
28
1,960
LNE-507-A065
70,000
49.0
50.8
70
24.5
25.4 '
35
15.4
2 @ 2 5/8
28
2,260
LNE-D04-A023
46,700
28.0
29.8
45
14.0
15.0
20
8.8
2 @ 1 3/8
28
1,290:
LNE-D04-A031
44,100
28.0
29.8
45
14.0
15.0
20
8.8
2 @ 1 5/8
42
1,390
LNE-D04-A036
41,800
28.0
29.8
45
14.0
15.0
20
8.8
2 @ 2 1/8
56
1 490
LNE-D06-A046
66,100
42.0
43.8
60
21.0
21.9
30
13.2
2 @ 2 1/8
42
2,060
LNE-D06-A054
62,700
42.0
43.8
60
21.0
21.9
30
13.2
2 @ 2 1/8
56
2,210
LNE-D08-A062
85,100
56.0
57.8
70
28.0
28.9
35
17.6
2 @ 2 1/8
42
2,730
LNE-D08-A073
80,000
56.0
57.8
70
28.0
28.9
35
17.6
2 @ 2 5/8
56
2,930'
LNE-D10-A079
106,400
70.0
71.8
90
35.0
35.9
45
22.0
2 @ 2 5/8
42
3,410
LNE-D10-A093
100,100
70.0
71.8
90
35.0
35.9
45
22.0
2 @ 2 5/8
56
3,660
LNE-D12-A112
120,100
84.0
85.8
100
42.0
42.9
50
26.4
2 @ 2 5/8
56
4,370
LNE-D14-A129
140,100
98.0
99.8
110
49.0
49.9
50
30.8
4 @ 2 5/8
56
5,070
• 7
19
�n
1140 Series
For customers seeking an economical solution to their capacity requirements, Larkin now offers the 1140
RPM Series with enhancements to improve capacity and serviceability. The 1140 Series features a broader
product range with capacities ranging from 15 to 249 nominal tons to address all applications.
New features include:
• Larkin's patent -pending ServiceEaseTM motor mount
• New, high efficiency condenser coil designed for optimum performance
• Expanded product range from 15 to 249 nominal tons
• Galvanized steel cabinet with options for aluminum or painted galvanized steel
Standard Features
• 10 fins per inch spacing
• Modular design with models in both single and double wide fan configurations.
• All Larkin condensers incorporate the Floating Tube' coil design which virtually eliminates
tube sheet leaks.
• Internal baffles provided between all fan cells
• Condensers up to 3 fans in length use 3/8"diameter tube to minimize refrigerant charge. Condensers 4
or more fans in length use 1/2 diameter tube to minimize refrigerant pressure drop
• Coated steel fan guards
• Weatherproof control panel with factory mounted door interrupt disconnect switch
• UL and UL listed for Canada
Available Options
• Multi -circuiting at no additional charge
• Optional 8, 12 or 14 FPI spacing
• Fan -cycle control panels
• Alternate coil construction including polyester coated fins, epoxy or phenolic coated fins and copper fins
• Hinged fan panels for ease of servicing
• Side access panels
• Extended condenser legs for increased ground clearance
• Sealtite wiring
20
CONDENSER CAPACITY
LNH
Table 14. Larkin 1140 Series LNH Models, 1140 RPM, 1.5 HP, 30" Fan Diameter
1140
Model
LNH-501-A007
8 FPI
6.4
R-22 I
MBH/
10 FPI
7.3
G-410A
1°TD
12 FPI
8.0
14 FPI
8.6
8 FPI
6.3
R-404A
MBH
10 FPI
7.2
I1°TD
12 FPI
7.9
14 FPI
8.5
H
Cki
•i
1
VI
!►
LNH-S01-A009
7.8
8.7
9.5
10.0
7.6
8.6
9,3
9.8
LNH-502-A011
9.6
10.7
11.7
12.4
9.4
10.5
11.5
12.1
LNH-502-A015
13.1
14.5
15.6
16.3
12.8
14.2
15.3
16.0
LNH-S02-A017
15.7
17.1
18.1
19.2
15.3
16.7
17.7
18.8
LNH-503-A022
19.7
21.8
23.4
24.5
19.3
21.4
22.9
24.0
LNH-503-A026
23.5
25.7
27.1
29.9
23.1
25.2
26.6
29.3
LNH-504-A029
26.2
29.1
31.2
32.6
25.7
28.5
30.5
32.0
LNH-504-A034
31.4
34.2
36.1
38.3
30.7
33.5
35.4
37.6
LNH-505-A037
33.6
37.1
39.3
41.3
32.9
36.4
38.5
40.5
LNH-505-A044
40.5
44.0
46.1
48.6
39.7
43.1
45.1
47.6
LNH-506-A053
48.6
52.8
55.3
58.3
47.7
51.7
54.1
57.1
LNH-507-A061
55.4
61.0
64.7
67.5
54.3
59.8
63.5
66.2
LNH-D04-A021
19.2
21.4
23.4
24.8
18.8
21.0
22.9
24.3
LNH-D04-A029
26.2
29.1
31.2
32.6
25.7
28.5
30.6
32.0144*
LNH-004-A034
31.4
34.2
36.1
38.3
30.7
33.5
35.4
37.6
I NH-n(16-4044
39 4
43 6
46 7
48 9
38 6
42 8
45 8
47 9
LNH-D06-A051
47.0
51.3
54.2
59.8
46.1
50.3
53.1
58.7
LNH-D08-A058
52.5
58.2
62.3
65.3
51.4
57.0
61.1
63.9
LNH-D08-A068
62.7
68.4
72.3
76.7
61.5
67.1
70.8
75.1
I NH-D10-A074
67.1
74.2
78.5
82.6
65.7
72.7
76.9
80.9
LNH-D10-A088
81.0
88.0
92.1
97.2
79.4
86.2
90.2
95.2
LNh-UI2-AI00
9/.2
IUD.O
11O.
110.0
9 .3
IU3.3
I '..5
tI,.L
LNH-D 14-A 122
110.8
121.9
129.5
135.0
108.6
119.5
126.9
132.4
BOLD indicates standard model capacity.
21
.�TIFJC
CONDENSER SPECIFICATIONS
LNH
Table 15. 1140 Series BNH Models, 1140 RPM, 1.5 HP, 30" Fan Diameter
1140
Model
LNH-S01-A007
CFM
9,900
208-230/3/60
FLA
7.0
MCA
15.0
MOPD
25
FLA
3.5
460/3/60
MCA
15.0
MOPD
15
FLA
2.8
575/3/60
MCA
15.0
MOPD
15
Unit
kW
1.9
Conn.
(in.)
13/8
Max.
No.
of
Feeds
7
Approx.
Net
Weight
(Ibs)
330
LNH-S01-A009
9,500
7.0
15.0
25
3..5
15.0
15
2.8
15.0
15
1.9 .
13/8
14
360
LNH-S02-A011
20,500
14.0
20.0
35
7.0
15.0
15
5.6
15.0
15
3.8
13/8
14
580
LNH-502-A015
19,800
14.0
20.0
35
7.0
15.0
15
5.6
15.0
15
3.8
15/8
21
630
LNH-502-A017
19,000
14.0
20.0
35
7.0
15.0
15
5.6
15.0
15
3.8
21/8
28
680
LNH-503-A022
29,700
21.0
22.8
40
10.5
15.0
20
8.4
15.0
15
5.8
21/8
21
930
LNH-S03-A026
28,500
21.0
22.8
40
10.5
20
20
8.4
15.0
15
5.8
21/8
28
1,000
LNH-504-A029
38,600
28.0
29.8
45
14.0
15.0
20
11.2
15.0
15
7.7
21/8
21
1,210
LNH-504-A034
37,000
28.0
29.8
45
14.0
15.0
20
11.2
15.0
15
7.7
2 5/8
28
1,310
LNH-505-A037
48,300
35.0
36.8
50
17.5
20.0
25
14.0
15.0
20
9.6
2 5/8
21
1,510
LNH-505-A044
46,200
35.0
36.8
50
17.5
20.0
25
14.0
15.0
20
9.6
25/8
28
1,640
LNH-S06-A053
55,400
42,0
43.8
60
21.0
21.9
30
16.8
20.0
25
11.5
2 5/8
28
1,950
LNH-S07-A061
64,700
49.0
50.8
70
24.5
25.4
35
19.6
20.3
25
13.5
2 @ 2 5/8
28
2,240
LNH-D04-A021
41,000
28.0
29.8
45
14.0
15.0
20
11.2
15.0
15
7.7
2 @ 1 3/8
28
1,240
LNH-D04-A029
39,600
28.0
29.8
45
14.0
15.0
20
11.2
15.0
15
7.7
2 @ 1 5/8
42
1,340
LNH-D04-A034
38,100
28.0
29.8
45
14.0
15.0
20
11.2
15.0
15
7.7
2 @ 2 1/8
56
1,440
LNH-D06-A044
59,400
42.0
43.8
60
21.0
21.9
30
16.8
20.0
25
11.5
2@21/8
42
1,990
LNH-D06-A051
57,100
42.0
43.8
60
21.0
21.9
30
16.8
20.0
25
11.5
2 @ 2 1/8
56
2,140
LNH-D08-A058
77,200
56.0
57.8
70
28.0
28.9
35
22.4
23.1
30
15.4
2 @ 2 1/8
42
2,630
LNH-D08-A068
73,900
56.0
57.8
70
28.0
28.9
35
22.4
23.1
30
15.4
2 @ 2 5/8
56
2,830
LNH-D10-A074
96,500
70.0
71.8
90
35.0
35.9
45
28.0
28.7
35
19.2
2 @ 2 5/8
42
3,290
LNH-D10-A088
92,400
70.0
71.8
90
35.0
35.9
45
28.0
28.7
35
19.2
2 @ 2 5/8
56
3,540
LNH-D12-A106
110,900
84.0
85.8
100
42.0
42.9
50
33.6
34.3
40
23.1
2 @ 2 5/8
56
4,230
LNH-D14-A122
129,400
98.0
99.8
110
49.0
49.9
50
39.2
39.9
45
26.9
4 @ 2 5/8
56
4,910
22
CONDENSER DIMENSIONS
End Views
Single Row of Fans Double Row of Fans
49 13
875 DIA. MTG.
HOLES TYP.
45.43
42.43 --�i
38.00 ---Ji
88.0
85.0
80.50
49 13
.875 DIA. MTG.
HOLES TYP.
73
4AIR FLOW
20.25
T-[ 53
59
1x
127
AIR FLOW
20.25
106
112
180
AIR FLOW
t
20.25
o .71
53
233
53
165
53
,AIR FLOW
I
�
tio
106
218
106
QAIR FLOW
¢ 20.25
I.- 53
53
53
271
339
53
53
QAIR FLOW
20.25
�53
53
53
392
324
53
53
53
AIR FLOW
20.25
9 1 53
53
53
53
377
53
53
53
1 x 5
2x5
1 x6
2x6
1 x7
2x7
23
Fan Cycle Control Panels
Fan cycling panels are available to cycle fans on ambient
temperature or condensing pressure or custom built control
panels can be factory installed to interface with electronic
refrigeration controllers.
• All fans are cycled with contactors.
• Condensers with a single row of fans cycle fans separately
with one contactor per fan.
• Condensers with two rows of fans cycle fans in pairs, with
one contactor for every pair of fans.
• Fans closest to the header end of the unit run continuously
Ambient Fan Cycle
Condenser fans are controlled by ambient temperature
using electronic temperature controls. Ambient fan cycling is
recommended for mufti -circuited condensers or single circuit
condensers where there is little variation in condenser load.
Ambient fan cycling is limited in its ability to control head
pressure to mild ambient conditions, see Table 16 for minimum
ombients for fan cycling. Full year head pressure c4ontrol can
Pressure Fan Cycling
Condenser fans are controlled by pressure switches which
monitor condenser pressure. Pressure fan cycling is ideal for
those condensers which see a significant change in condenser
load. Since the controls sense condensing pressure, they can
cycle fans at any ambient temperature, in response to a change
in condensing pressure. +.
Table 16. Minimum Ambient for Fan Cycling
• Standard control circuit voltage is 230 volts. Control
circuits with 24 or 115 volts are available on request.
• Control circuits are factory wired to a control circuit
terminal board for convenient single point field wiring.
Standard control circuits require an external power supply
for powering control circuit (by others).
A control circuit transformer is available on 460 volt
condensers as a factory mounted option to provide
power to the control circuit.
be obtained by combining ambient fan cycling with another means
of head pressure control, such as condenser flooding controls or
variable speed. Combining these controls with ambient fan cycling
has the additional advantage of reducing the amount of refrigeran
required to flood the condenser.
See Table 17 for typical settings for ambient thermostats.
An additional pressure switch is available as an option to cycle the'* - $'
fan closest to the header end of the condenser. This option is only
recommended for condensers with large variations in condenser
load caused by heat reclaim, hot gas defrost or a high percentage of
compressor unloading.
Number of Fans
i
Design T.D.*
_ .
_
Single Row
. Double Row
30
25 _
20
15
_ 10
2
4
35
45
55
60
70
3
6
15
30
40
55
65
4
8
0
15
30
45
60
5
10
0
10
20
35
55
6/7
12/14
0
0
10
30
50
*Based on maintaining 90° F minimum condensing temperature.
24
Table 17. Fan Cycling Thermostat Settings
Number
Single Row
2
of Fans
Double Row
4
Design
' T.D.
30
25
20
15
10
1
60
65
70
75
80
Thermostat
2
Setting
-
l
3
6
30
25
20
15
10
60
65
70
75
80
40
55
60
65
75
4
8
30
25
20
15
10
60
65
70
75
80
50
55
65
70
75
30
40
50
60
70
5
10
30..,
25
20
15
10
60
65
70
75
80
55
60 .
65
70
75
45
50
60
65
70
30
35
40
55
65
6/7
12/14
30 .
25
20
15
10
55
65
70
75
80
50
60
65
70
75
40
55
60
65
70
30
45
50
60
65
25
35
40
50
60
Variable Speed
Condenser head pressure control is provided by varying the air flow
through the condenser by changing the RPM of the condenser fan.
This control package is offered in combination with ambient fan
cycling. The fan motor next to the header end of the condenser
is the variable speed fan. The remainder of the fans are constant
speed and are cycled separately using ambient sensing thermostats.
On condensers with two rows of fans, two variable speed fans are
provided (one per unit) and the remainder of the fans are constant
speed and are cycled in pairs.
Splitting Controls
Additional head pressure can be provided by valving off a portion
of the condenser circuit and removing that portion from the
refrigeration circuit, or splitting the condenser. In addition to
providing a means of head pressure control, this control will reduce
the amount of refrigerant required to operate the condenser with a
flooded head pressure control.
Condenser splitting is recommended as a seasonal adjustment
controlled by ambient temperature. A pressure switch is also
provided as a backup control to prevent high head pressures from
occurring during heavy load conditions.
On condensers with a single row of fans the control package consists
of an ambient sensing thermostat, a pressure switch
The variable speed control package consists of a special variable
speed motor (1140 RPM, single phase) and an electronic speed
control which controls the speed of the motor in response to
condensing pressure. Fan motor, speed control and all related
components are all factory mounted and wired. Two speed controls
are provided on units with two rows of fans to allow for separate
control of each fan motor.
sensing condensing pressure and a splitting relay. The splitting relay
provides a set of dry contacts to control the valves required to split
the condenser (valves supplied by others).
On condensers with double rows of fans, additional controls and
contactors are provided to cycle all of the fans on the side of the
condenser which has been split off.
Except as noted above, the splitting packages do not control
fan cycling. It is recommended that fan cycling be controlled by
combining the splitting package with pressure fan cycling.
25
Control Panels for Electronic Controllers
Custom control panels can often be fabricated to interface with
many of the microprocessor based electronic refrigeration controls.
These panels often include individual motor fusing, individual fan
Condenser Refrigerant Charge
The normal summer operating charge for condensers is shown
in Table 18. This charge can also be used in condensers with fan
cycling kits, since added refrigerant is not required for mild weather
control. Table 18 also contains the additional refrigerant charge
required when using flooded style head pressure controls.
motor contactors, splitting relays and printed circuit boards to
interface with the microprocessor control. Contact the factory with
your specific requirements.
Combining fan cycling with flooded head pressure controls
significantly reduces the amount of winter charge required to flood
the condenser. Table 20 shows the refrigerant charge required
when fan cycling is used in conjunction with a flooded style head
pressure control.
Table 18. Refrigerant
Model*
1
Charge,
Refrigerant R-22
Charge
for summer
Operation, Lbs.
8
Lbs. R-22 tor
+60
7
Flooded Condenser
Additional Refrigerant
for Flooded
Minimum
+40
10
R-22
Condenser
Lbs. For 20°F TD
Ambient at
+20
11
Charge Required
Operation
Condenser
+0
11
-20
11
2
10
10 F
13
15,
15 ;
16
3
10
10
13
14
15
15
4
15
15
19
21
22
23
5
29
30
39
43
45
47
6
22
22
29
32
34
35
7
30
29
38
42
44
46
8
51
50
66
74
77
80
9
70
66
87
96
100
105
" 10
64 .
62
83 ...,
..:
92
95
99
11
86
83
110
122
127
132
12
102
100
132
147
153
159
13
118
117
155
172
179
186
14
19
20
27
29
31
32
15
29
30
39
44
46
47
16
40
39
51
57
59
62
17
44
44
58
64
67
70
18
58
59
78
86
90
94
19
104
99
131
146
152
158
20.
140
131
174
193
201
209
21
125
126
168
186
194
201
22
172
165
219
243..
253
263
23
201
201
267
296
308
320
24
236
233
310
343
357
372
* See Model Cross Reference Table #21.
Table 19. Flooded Charge Temperature Difference Factor
Ambient, °F
+60
+40
+20
0
-20
Design T.D.- -
30 - - 25 20
0.59
0.76
0.84
0.88
0.38
0.80
0.88
0.91
0.93
1.0
1.0
1.0
1.0
1.0
15
1.74
1.19
1.13
1.07
1.05
10
2.46
1.40
1.25
1.16
1.13
26
•
•
Table 20. Refrigerant Charge for Fan Cycling plus Flooded Condenser (lbs. R-22)
Model*
1
Summer
Charge
8
` 40°F
7
25
20°F
8
TD
0°F
9
i
-20°F
9
40°F
8
20°TD
20°F
9
0°F
10
i -20°F
10
40°F
9
15°TD
20°F
10
: 0°F
11
_
-20°F
11
-
i 40°F
13
10°TD
-
L 20°F
12
-
0°F
12
-20°F
12
2
10
9
12
.13
14
11
13
14
15
13
14
15
16
17
18
17
18
3
10
1
6
8
10
4
8
10
11
7
10
12
13
10
13
14
14
4
15
2
9
12
15
7
12
15
17
12
16
18
19
17
19
21
22
5
29
4
17
24
29
14
24
30
34
24
31
36
39
33
38
41
43
6
22
0
3
10
15
0
10
16
20
0
17
22
25
0
24
27
29
7
30
0
4
13
20
0
12
20
26
0
21
27
32
0
29
34
38
8
51
0
0
8
22
0
6
23
35
0
22
38
48
0
37
52
61
9
70
0
0
11
29
0
8
31
46
0
29
51
63
0
49
71
80
10
64
0
0
0
15
0
0
17
33
0
0
39
52
0
0
60
70
11
86
0
0
0
19
0
0
22
44
0
0
50
69
0
0
78
93
12
102
0
0
0
6
0
0
8
37
0
0
37
69
0
0
66
100
13
118
0
0
0
0
0
0
0
29
0
0
0
69
0
0
0
108
14
19
3
12
17
20
9
17
21
23
15,
22
25
26
21
27
29
29
15
29
4
17
24
29
13
24
30
34
22
31
36
39
31
38
41
43
16
40
5
22
32
38
17
31
39
44
29
40
46
50
41
49
53
56
17
44
0
5
20
31
0
18
31
40
0
31
42
49
0
44
53
59
18
58
0
7
27
42
0
25
42
54
0
43
57
66
0
61
71
79
19
104
0
0
17
44
0
12
47
69
0
43
77
95
0
74
107
119
20
140
0
0
22
57
0
16
62
91
0
57
102
125
0
99
141
157
21
125
0
0
0
30
0
0
34
67
0
0
77
105
0
0
120
141
22
172
0
0
0
39
0
0
44
88
0
0
100
137
0
0
156
186
23
201
0
0
0
11
0
0
16
74
0
0
74
137
0
0
132
200
24
236
0
0
0
0
0
0
0
57
0
0
0
135
0
0
0
213
* See Model Cross Reference Table #21.
Note: For all other refrigerants, use the table at the right. For alternate T.D.s,
multiply by flooded charge T.D. factors in Table 9.
Refrigerant Multiply charge by:
R-134a
R-404A
R-410A
0.99
0.91
0.93
27.
Table 21. Model Cross Reference
Model Reference
1
LNH
LNH-S01-A007
LNL
LNL-S01-A007,
LNX
LNX-S01-A006
LNQ
LNQ-S01-A005
LNE
LNE-S01-A008',
2
LNH-S01-A009
LNL-S01-A008
LNX-S01-A008
LNQ-S01-A006
LNE-501-A009
3
LNH-S02-A011
LNL-502-A010
LNX-S02-A010
LNQ-S02-A008
LNE-S02-A011
4
LNH-S02-A015
LNL-S02-A014
LNX-502-A013
LNQ-S02-A010
LNE-S02-A015
5
LNH-S02-A017
LNL-502-A016
LNX-S02 A015
LNQ-502-A012
LNE-S02-A018
6
LNH-S03-A022
LNL-S03-A021
LNX-S03-A020
LNQ-S03-A016
LNE-S03-A023
7
LNH-503-A026
LNL-503-A024
LNX-503 A023''
LNQ-503-A017
LNE S03-A027' '":
8
LNH-SO4-A030
LNL-504-A028
LNX-504-A026
LNQ-SO4-A021
LNE-SO4-A031
9
LNH-SO4-A034
LNL-504-A032
LNX-SO4 A030
LNQ-SO4-A023
LNE 504 A036
10
LNH-S05-A037
LNL-505-A036
LNX-S05-A033
LNQ-S05-A026
LNE-S05-A039
11
LNH-S05-A044
LNL-505-A042
LNX-505-A038
LNQ-S05-A029
LNE-505-A047
12
LNH-506-A053
LNL-506-A050
LNX-506-A045
LNQ-S06-A034
LNE-506-A056
13
LNH-507-A061
LNL-S071A055
LNX-S07-A052
LNQ-507-A042
LNE-507-A065
14
LNH-D04-A021
LNL-D04-A020
LNX-D04-A020
LNQ-D04-A016
LNE-D04-A023
15
LNH-D04-A029
LNL-D04=A028 '`"
LNX-D04-A026
:'LNQ-D04-A021
LNE-D04-A031 :
16
LNH-D04-A034
LNL-D04-A032
LNX-D04-A030
LNQ-D04-A023
LNE-D04-A036
17
LNH-D06-A044
LNL-D06-A042
LNX-D06-A040
LNQ-D06-A031
LNE-D06-A046
18
LNH-D06-A051
LNL-D06-A048
LNX-D06-A045
LNQ-D06-A034
LNE-D06-A054
19
LNH-D08-A058
LNL-D08-A056
LNX-D08-A053
LNQ-D08-A041
LNE-D08-A062,
20
LNH-D08-A068
LNL-D08-A065
LNX-D08-A061
LNQ-D08-A046
LNE-D08-A073
21
LNH-D10-A074
LNL-D10-A071
LNX-D10-A066
. LNQ-D10-A052
LNE-D10-A079,
22
LNH-D10-A088
LNL-D10-A083
LNX-D10-A076
LNQ-D10-A057
LNE-D10-A093
23
LNH-D12-A106
LNL-D12-A100
LNX-D12-A091
LNQ-D12-A069
LNE-D12-A112
24
LNH-D14-A123
LNL-D14-A110
LNX-D14-A104
LNQ-D14-A083
LNE-D14-A129
Calculate Refrigerant Charge
Refrigeration operating charges are located in Table 18 for flooded condenser and Table 20 for fan cycling plus flooded condenser.
Charge for flooded condenser = summer charge (Table 18) + additional flooding charge (Table 18) * flooded charge T.D, factor (Table 19)
Charge for fan cycling + flooding = summer charge (Table 20) + additional charge for fan cycling (Table 20)
Example:
Obtain the summer charge for a LNH-S05-A037. What is the flooding charge required to operate this condenser at 0° ambient at a 20°T.D. with
R-22 refrigerant? What is the reduction in operating charge if fan cycling is combined with flooding?
Procedure:
From Table 18, obtain the summer operating charge for a LNH-S05-A037 of 64 lbs. The charge for winter operation with flooded controls is
equal to the summer operating charge of 64 lbs. plus the additional charge at 0° ambient (Table 18) of 95 lbs., times the flooded charge T.D.
factor (Table 19) of 1.0 for 20°T.D.
Charge for flooded condenser = 64 + (95) * 1.0
= 159 lbs.
The charge for fan cycling plus flooded condenser is obtained using Table 20. Using this table obtain the additional charge for 20°T.D. at 0°
ambient, which is 17 lbs. The total charge is the summer charge (64 Ibs.) plus the additional charge.
Charge for fan cycle + flooding = 64 + 17
= 81 lbs.
The savings in refrigerant charge = 159 - 81
= 78 Ibs.
28
Diagram 1. Typical Condenser Wiring Diagram With No Fan Cycle Controls
• a r
rp
-.‹S •
. N.•
•
-_-.•
•!•
•r
4.1•5.7
"
1.1 3 A
• •
•
Er:
....—. 1 •
. a. %, • .
41....' . . .. .
• • • • II :"i 1 .
.'.......... . •••1• 1 v
! : 1 •
• • • 4 : I •
1 . i
I : I .. .
••- i : i .
%::/••••• •• •• •• .• ...; i I .
; • 1 .
i
1 1 I I I
! ! •
I : I . 1 .3 •
I II
,,,giu ;••••••.......1 ...... ----•--
•.---.i
T 1 "' a.• .71 •
1 .71 . ..
eritr.111•3 11 L• 1•1•••••1•1••••• 3 ••••=11•••3•,• II 5. 71 e' : •
.e., wm• ./•.. • ••• • ,i• •• ••••••• •.1.1. . • .•., ,•,.LIII "re •.: '•1:
‘...d...........•,............••.•....4 : I IN ..i....
1 . I ... ..
I • I
, . 1..........--..............—...en.v.!..1
tiS • e
•• .`•• i :
I :
, .
.• .- i 1
.1. % •••••• .. ...... . .... i
• 'it N...'
1 ;
'"'. 1 • i
1
-._, . . ..... . ' • • 4
I •
•F I ' 1
.......... ,. ...... . ., . I . i
....., ..; ?:
;". ! •
4! . 3 ..-.....--........_._......,
4 _.____I;
1 ;
1 .
...L
I :
4 :
.• • - • • 1 •
. • —
I•
•
;
ury
r_7
i`-rq • •
istrid Noll I
I I
fa-- • •
it •
:
29
Diagram 2. Typical Condenser Wiring Diagram With Fan Cycle Controls
ewe
▪ 4.444
ti4-
••
4.P
i'
I
t-4 I44.41
4 i;
• • L4I
1 Y 144YYY•••r�Y• •'RV .lrT.••.
1n
ram ;
..if.._ I.•••Ir•11l
' it ------••'•'
r
1 '.4 Y,i•tiv.ei•rr•i
—Ia.
•I 4
... • 41
.Ly:i�•. i� a ti 1�.1�
i• 4 1;
1..:—..-1..
4 I
1 i1 ill
L I Er: 1 •...5
!l..1154 k 'Y
{
i ,y I.L. 1 vX1 •_
1 ........1
• a. ...-. I L1•
1 4 ▪ I •I .— r. 1
1 1
i •• . •I i I r•• IA.I .f
4 ..
. I
ti
.• I '
I
i I I
1
I
I
1
I
I 1
I E
r
I ,_i
1 1 I -I
1 • x1
IIA ; r1s.:'
1
1 4.
I4 x 11 a1
•
r •Y ' '1 4 r'. 7
• .1 L 1 .1 •
I IM y 1
h14• titY
i .
I • :•• I Irby
Ifu •
4,
P.i
I
i::•V :.1:1ti931 1.111.d ,^r
30
•
Sound Data for Altus and 1140 Series
dBA @ 10 ft.
auo
730
63,0
60 0
aan
5QA
430
0
Unit Sound Data (dBA @ 10 ft.)
1-- -Law C L.11L
10
Number of Fares
Unit Sound Data (dBA @ 10 ft.)
17
Fans
1
LNH
72.3
LNL
63.4
1 LNX
60.8
L LNQ
49.6
2
75:3
66.4
63.8
52.6
3
77.1
68.1
65.6
54.4
4
78.3
69.4
66.8
55.6
5
79.3
70.3
67.8
56.6
6
80.1
71.1
68.6
57.4
7
80.8
71.8
69.3
58.1
8
81.3
72.4
69.8
58.6
10
82.3
73.4
70.8
59.6
12
83.1
74.1
71.6
60.4
14
83.8
74.8
72.3
61.1
14
31
r II
.51,• mom -7'
•
For more information on Larkin products,
contact your Larkin Sales Representative
or visit us at www.larkinproducts.com
fria4ter Of C4i
fig
A Brand of Heatcraft Refrigeration Products LLC
2175 West Park Place Blvd. • Stone Mountain, GA • 30087
800.848.9889 • FAX 770.465.5990
www.larkinproducts.com
Since product improvement is a continuing effort, we reserve the right to make changes in specifications without notice.
Version 002
PERMIT COORD COPY
PLAN REVIEW/ROUTING SLIP
PERMIT NUMBER: M14-0205 DATE: 11/12/14
PROJECT NAME: COSTCO
SITE ADDRESS: 400 COSTCO DR
X Original Plan Submittal
Response to Correction Letter #
Revision # before Permit Issued
Revision # after Permit Issued
DEPARTMENTS:
AWC
Building Division
Public Works ❑
PCM of Iik
Fire Prevention
Structural
Planning Division
Permit Coordinator II
PRELIMINARY REVIEW:
Not Applicable
(no approval/review required)
DATE: 11/13/14
Structural Review Required
REVIEWER'S INITIALS: DATE:
APPROVALS OR CORRECTIONS:
Approved
Corrections Required
Approved with Conditions
Denied
(corrections entered in Reviews) (ie: Zoning Issues)
DUE DATE: 12/11/14
Notation:
REVIEWER'S INITIALS:
DATE:
Permit Center Use Only
CORRECTION LETTER MAILED:
Departments issued corrections: Bldg ❑ Fire ❑ Ping ❑ PW ❑ Staff Initials:
12/18/2013
KEY MECH CO OF WASHINGT0 T
Page 1 of 2
Washington State Department of
Labor & Industries
KEY MECH CO OF WASHINGTON
Owner or tradesperson
HEISLER, ROBERT L
Principals
HEISLER, ROBERT L
LEONARD, FRANK W
SANDAHL, LEE F
Doing business as
KEY MECH CO OF WASHINGTON
WA UBI No.
600 196 154
19430 68TH AVE S STE B
KENT, WA98032
253-872-7392
KING County
Business type
Corporation
License
Verify the contractor's active registration / license / certification (depending on trade) and any past violations.
Construction Contractor
License specialties
GENERAL
License no.
KEYMEW*240NZ
Effective — expiration
08/09/1976— 04/01/2015
Bond
LIBERTY MUTUAL INS CO
Bond account no.
023011682
Received by L&I
03/23/2009
Bond history
Insurance
Hartford Fire Ins Co
Policy no.
52UENOE0154
Received by L&I
03/31/2014
Active.
Meets current requirements.
$12,000.00
Effective date
04/01/2009
Expiration date
Until Canceled
$1,000,000.00
Effective date
03/31 /2013
Expiration date
https://secure.lni.wa.gov/verify/Detail.aspx?UBI=600196154&LIC=KEYMEW*240NZ&SAW= 11/19/2014