Loading...
HomeMy WebLinkAboutPermit M14-0205 - COSTCO - CONDENSORSCOSTCO 400 COSTCO DR M14-0205 Parcel No: Address: City of Tukwila Department of Community Development 6300 Southcenter Boulevard, Suite #100 Tukwila, Washington 98188 Phone: 206-431-3670 Inspection Request Line: 206-438-9350 Web site: http://www.TukwilaWA.gov 2523049057 400 COSTCO DR BLDG Project Name: COSTCO MECHANICAL PERMIT Permit Number: M14-0205 Issue Date: 11/19/2014 Permit Expires On: 5/18/2015 Owner: Name: Address: Contact Person: Name: Address: Contractor: Name: Address: License No: Lender: Name: Address: COSTCO WHOLESALE 999 LAKE DR ATTN: PROPERTY TAX #06, ISSAQUAH, WA, 98027 BILL ZORNES 19430 68 AVE S , KENT, WA, 98032 KEY MECHANICAL CO OF WA 19430 68TH AVE S #B, KENT, WA, 98032-1193 KEYMEW*240NZ Phone: (253) 872-7392 Phone: (253) 872-7392 Expiration Date: DESCRIPTION OF WORK: REPLACE EXISTING CONDENSORS A/B LIKE FOR LIKE. EXISTING ARE WORN OUT AND ARE IN NEED OF A CHANGE. Valuation of Work: $17,000.00 Type of Work: REPLACEMENT Fuel type: ELECT Fees Collected: $415.74 Electrical Service Provided by: PUGET SOUND ENERGY Water District: TUKWILA Sewer District: TUKWILA SEWER SERVICE Current Codes adopted by the City of Tukwila: International Building Code Edition: International Residential Code Edition: International Mechanical Code Edition: Uniform Plumbing Code Edition: 2012 2012 2012 2012 International Fuel Gas Code: WA Cities Electrical Code: WA State Energy Code: 2012 2014 2012 Permit Center Authorized Signature: Date: I hearby certify that I have read and examined this permit and know the same to be true and correct. All provisions of law and ordinances governing this work will be complied with, whether specified herein or not. The granting of this permit does not presume to give authority to violate or cancel the provisions of any other state or local laws regulating construction or the performance of work. I am authorized to sign and obtain this development permit and agree to the conditions attached to this permit. Signature: Print Name: gv-ea S Date: <<! 1 it LI This permit shall become null and void if the work is not commenced within 180 days for the date of issuance, or if the work is suspended or abandoned for a period of 180 days from the last inspection. PERMIT CONDITIONS: 1: Readily accessible access to roof mounted equipment is required. 2: All construction shall be done in conformance with the Washington State Building Code and the Washington State Energy Code. 3: Remove all demolition rubble and loose miscellaneous material from lot or parcel of ground, properly cap the sanitary sewer connections, and properly fill or otherwise protect all basements, cellars, septic tanks, wells, and other excavations. Final inspection approval will be determined by the building inspector based on satisfactory completion of this requirement. 4: All plumbing and gas piping work shall be inspected and approved under a separate permit issued by the City of Tukwila Building Department (206-431-3670). 5: All electrical work shall be inspected and approved under a separate permit issued by the City of Tukwila Permit Center. 6: VALIDITY OF PERMIT: The issuance or granting of a permit shall not be construed to be a permit for, or an approval of, any violation of any of the provisions of the building code or of any other ordinances of the City of Tukwila. Permits presuming to give authority to violate or cancel the provisions of the code or other ordinances of the City of Tukwila shall not be valid. The issuance of a permit based on construction documents and other data shall not prevent the Building Official from requiring the correction of errors in the construction documents and other data. 7: ***MECHANICAL PERMIT CONDITIONS*** 8: All mechanical work shall be inspected and approved under a separate permit issued by the City of Tukwila Permit Center (206/431-3670). 9: All permits, inspection record card and approved construction documents shall be kept at the site of work and shall be open to inspection by the Building Inspector until final inspection approval is granted. 10: Manufacturers installation instructions shall be available on the job site at the time of inspection. PERMIT INSPECTIONS REQUIRED Permit Inspection Line: (206) 438-9350 1800 MECHANICAL FINAL 0705 REFRIGERATION EQUIP 0701 ROUGH -IN MECHANICAL CITY OF TUKWILA Community Development Department Public Works Department Permit Center 6300 Southcenter Blvd., Suite 100 Tukwila, WA 98188 http://www.ci.tuk-wila.wa.us Building Permit No. 6 . Mechanical Permit No. l /V Plumbing/Gas Permit No. Public Works Permit No. Project No. (For office use only) Applications and plans must be complete in order to be accepted for plan review. Applications will not be accepted through the mail or by fax. **Please Print** Site Address: 400 Costco Drive Tenant Name: Costco Wholesale King Co Assessor's Tax No.: Suite Number: Floor: New Tenant: ❑ Yes X❑..No Property Owners Name: Costco Wholesale Mailing Address: 999 Lake Drive Issaquah City Wa State 98027 Zip CONTACT PERSON - who do we contact when your permit is ready to be issued Name: Bill Zornes Mailing Address: 19430 68th Ave South E-Mail Address: BZornes@KeyMechanical.com Day Telephone: 2 5 3. 8 7 2. 7 3 9 2 Kent Wa 98032 City State Fax Number: 2 5 3. 8 7 2. 7 3 9 8 Zip GENERAL CONTRACTOR INFORMATION — (Contractor Information. for Mechanical (pg 4) for Plumbing and Gas Piping (pg 5)) Company Name: Mailing Address: City Contact Person: Day Telephone: E-Mail Address: Fax Number: Contractor Registration Number: Expiration Date: State Zip ARCHITECT OF RECORD — All plans must be wet stamped by Architect of Record Company Name: N/A Mailing Address: city Contact Person: Day Telephone: E-Mail Address: Fax Number: State Zip ENGINEER OF RECORD - All plans must be wet stamped by Engineer of Record Company Name: Mailing Address: N/A City State Zip Contact Person: Day Telephone: E-Mail Address: Fax Number: Q:\ApplicationsTorms-Applications On Line\3-2006 - Permit Application.doc Revised: 9-2006 bh Page 1 of 6 MECHANICAL PERMITINFORMATION - 206-431-3670 MECHANICAL CONTRACTOR INFORMATION Company Name: Key Mechanical Company of Wa. Mailing Address:19430 68th Ave South Contact Person: Bill Zornes Kent Wa 98027 E-Mail Address: BZornes@KeyMechanical . com Contractor Registration Number: KEYMEW* 24 ONZ City State Day Telephone: 2 5 3. 8 7 2. 7 3 9 2 Fax Number: 2 5 3. 8 7 2. 7 3 9 8 Zip Expiration Date: Nti5 0010310 Valuation of Mechanical work (contractor's bid price): $ $17 , 0 0 0 . 0 0 Scope of Work (please provide detailed information): Replace existing condensers A/B. like for like. existing are worn out and are in need of a change. Use: Residential: New .... ❑ Replacement .... ❑ Commercial: New .... ❑ Replacement ....El Fuel Type: Electric ❑ Gas....❑ Other: Indicate type of mechanical work being installed and the quantity below: Unit Type: Qty Unit Type: Qty Unit Type: Qty Boiler/Compressor: Qty Furnace<100K BTU Air Handling Unit >10,000 CFM Fire Damper 0-3 HP/100,000 BTU Furnace>100K BTU Evaporator Cooler Diffuser 3-15 HP/500,000 BTU Floor Furnace Ventilation Fan Connected to Single Duct Thermostat 15-30 HP/1,000,000 BTU Suspended/Wall/Floor Mounted Heater Ventilation System Wood/Gas Stove 30-50 HP/1,750,000 BTU Appliance Vent Hood and Duct Emergency Generator 50+ HP/1,750,000 BTU Repair or Addition to Heat/Refrig/Cooling System Incinerator - Domestic Other Mechanical Equipment 2 Remote Condenser Air Handling Unit <10,000 CFM Incinerator — Comm/Ind Q:\Applications\forms-Applications On Line\3-2006 - Permit Application.doc Revised: 9-2006 bh Page 4 of 6 PERMIT APPLICATION NOTES - Applicable to all permits in this application Value of Construction — In all cases, a value of construction amount should be entered by the applicant. This figure will be reviewed and is subject to possible revision by the Permit Center to comply with current fee schedules. Expiration of Plan Review — Applications for which no permit is issued within 180 days following the date of application shall expire by limitation. Building and Mechanical Permit The Building Official may grant one or more extensions of time for additional periods not exceeding 90 days each. The extension shall be requested in writing and justifiable cause demonstrated. Section 105.3.2 International Building Code (current edition). Plumbing Permit The Building Official may grant one extension of time for an additional period not exceeding 180 days. The extension shall be requested in writing and justifiable cause demonstrated. Section 103.4.3 Uniform Plumbing Code (current edition). I HEREBY CERTIFY THAT I HAVE READ AND EXAMINED THIS APPLICATION AND KNOW THE SAME TO BE TRUE UNDER PENALTY OF PERJURY BY THE LAWS OF THE STATE OF WASHINGTON, AND I AM AUTHORIZED TO APPLY FOR THIS PERMIT. BUILDING OWNE Signature: Print Name: ty� l i i gynei Mailing Add ZED AGENT: Date: 10.31.2014 Day Telephone: 2 5 3. 8 7 2. 7 3 9 2 Kent City State Zip Date Application Accepted: 1` 12,s_ Date Application Expires: �` �� T--- Staff Initials: 0 /J Q:\Applications\Forms-Applications On Line\3-2006 - Permit Application.doc Revised: 9-2006 bh Page 6 of 6 DESCRIPTIONS PermitTRAK Cash Register Receipt City of Tukwila ACCOUNT QUANTITY PAID $415.74 M 14=0205 Address. 400 COSTCO DR BLDG pn: 2523049057 .r 415.74 MECHANICAL $399.75 PERMIT ISSUANCE BASE FEE R000.322.100.00.00 0.00 $32.50 PERMIT FEE R000.322.100.00.00 0.00 $287.30 PLAN CHECK FEE R000.322.102.00.00 0.00 $79.95 TECHNOLOGY FEE $15.99 TECHNOLOGY FEE TOTAL FEES PAID BY RECEIPT: R3532 R000.322.900.04.00 0.00 $15.99 $415.74 Date Paid: Wednesday, November 12, 2014 Paid By: KEY MECHANICAL COMPANY Pay Method: CHECK 2620 Printed: Wednesday, November 12, 2014 11:17 1 of 1 AM SYSTEMS INSPECTION RECORD Retain a copy with permit INSPECTION NO. PERMIT NO. it4 .-01,0 CITY OF TUKWILA BUILDING DIVISION 6300 Southcenter Blvd., #100, Tukwila. WA 98188 (206) 431-3670 Permit Inspection Request Line (206) 436-9350 Project; ( 'st Type of44C_Pn: .0 Ic-tej6ff- -1----A Address:3 6,05.7 )(es. Date (red, :so / Special Instructions: n) (-- .i r`°- - .,, j • ' ‘ s 9 i } il, l N Or\t}''''. P t"C ,_-\ ,t • bate Wanted: a.m. ( I - 2 5 - 4(P.m. ' Requester: Pho No; 3 - Erri2, =7312, [3 Approved per applicable codes. LJCorrections required prior to approval. COMMENTS: r)ne 5-cA‘TT fry)) R-A P 1 Inspetor: Date: / -1 .C-44 ri REINSPECTION FEE REQUIRED, Prior to next inspection. fee must be paid at 6300 Southcenter Blvd.. Suite 100. Call to schedule reinspection. REVIEWED FOR CODE COMPLIANCE APPROVED NOV 18 2014 City of Tukwila BUILDING DIVISION Air Cooled Condensers Technical Guide LK-ACCTB February 2007 RECEIVED CITY OF TUKWILA NOV 1 2 2014 PERMIT CENTER Sond M ami7Ordm 30,I:iiI MIoog • TABLE OF CONTENTS Overview 2, 3 Features & Options 3, 4 Three Solutions 5 Nomenclature 6 Condenser Selection Procedure 7-9 Altus"' Series 540 RPM 10-11 830 RPM 12-15 SoIusTM Series EC Selection 16 Sound Data 16 Energy Comparison 17 Capacities 18 Specifications 19 1140 RPM Series Features & Options 20 Capacities 21 Specifications 22 Dimensions 23 Fan Cycling 24-25 Control Panels for Electronic Controllers 26 Condenser Refrigerant Charge 26-28 Calculate Refrigerant Charge 28 Typical Condenser Wiring Diagrams 29-30 Sound Data 31 US OVERVIEW The Larkin Solus and Altus Series of direct drive air- cooled condensers incorporate the latest advancements in condenser technology to provide the quietest and most efficient condensers in the industry. SolusTM Series Optimized sound and energy performance. The Solus Series of condensers by Larkin offers the optimum solution for sound and energy performance. The Solus Series utilizes EC motor technology, which provides unmatched sound and energy performance and is the perfect solution for those applications where low noise levels and significant energy savings are essential for success. Since product improvement is a continuing effort, we reserve the right to make changes in specifications without notice. AltusTM Series Excellence in sound, energy and capacity solutions. The Altus Series of condensers by Larkin utilizes 830 and 540 RPM motors and incorporates advanced features that further improve sound levels and energy efficiencies, as well as provide increased capacity in a smaller footprint. In addition, there are new features designed to improve serviceability, resulting in reduced maintenance costs. The Altus Series is a perfect fit for applications requiring low sound and energy levels and optimized capacities. 1140 Series Larkin continues to offer the 1140 RPM Series for customers seeking the most economical solution for their capacity requirements. Larkin condensers now incorporate a broader product range with capacities ranging from 11 to 265 nominal tons to address all applications. All Larkin condenser coils incorporate the Floating Tube" coil design, which virtually eliminates the possibility of tube sheet leaks. Condenser coils are designed for maximum heat transfer and are designed to operate with CFC-free refrigerants. As with all Larkin products, extensive testing of the condenser ensures long and trouble -free service life. 2 0 2007, Heatcraft Refrigeration Products LLC OVERVIEW (continued) The condensers are designed for outdoor application with housings available in aluminum finish and painted or unpainted galvanized steel. The condensers are available in either single or double wide fan configurations. The condenser design incorporates the features most desired in air-cooled condensers. An extensive list of options and fan cycle control panels complement the condenser design and allow the condenser to match the most rigid application requirements. Solus'" Series Condenser with EC Motor Technology The Floating Tube'' Coil Design Dramatically Reduces Tube Sheet Leaks FEATURES Larkin's latest air-cooled condenser is available in multiple product tiers and are designed with features to meet exacting customer requirements. Larkin Solus" Series of Condensers Customers seeking optimum sound and energy performance can select the Larkin Solus Series of condensers with EC motor technology. EC motors provide unparalleled sound and energy performance. Features include: • EC motor, swept fan blade and venturi incorporating integrated variable speed technology • Broad capacity range from 16 to 264 tons • Aluminum housing for an attractive appearance and corrosion protection, with painted galvanized steel, or galvanized steel available as an option • Side access panels allow for ease of cleaning coils 3 ♦ Larkin AltusTM Series of Condensers The Altus Series by Larkin utilizes 830 and 540 RPM motors and incorporates advanced features that further improve sound levels and energy efficiencies as well as provide increased capacity in a smaller footprint. In addition, there are new features designed to improve serviceability, resulting in reduced maintenance costs. The Altus Series is a perfect fit for applications requiring low sound and energy levels and optimized capacities. Features include: • Direct drive fan motors in 830 or 540 RPM • The patented QuietEdgeTM fan blade provides an unprecedented sound level of 49.6 dBA (540 RPM @ 10 ft.) • Larkin's patent -pending ServiceEaset" motor mount feature, allows for ease of motor service and reduces likelihood of damage to the coils during servicing • Larkin condenser coils incorporate the latest advancements in coil technology to provide maximum capacity • Broader product range to address all applications — capacities ranging from 11 to 225 nominal tons • Galvanized steel cabinet with an option for aluminum or painted galvanized steel • High efficiency, three-phase fan motors with ball bearings and internal overload protection 1140 Series For customers seeking an economical solution to their capacity needs, Larkin now offers the 1140 RPM Series with enhancements to improve capacity and serviceability. ServiceEaseT" Motor Mount System Larkin's Patented QuietEdgeTM Fan Blade for Improved Sound Performance Features include: • Direct drive fan motors • Larkin's patent -pending ServiceEaseT" motor mount • New, high efficiency condenser coil designed for optimum performance • Expanded product range from 15 to 249 nominal tons • Galvanized steel as a standard housing, with an option for aluminum or painted galvanized steel • High efficiency, three-phase fan motors with ball bearings and internal overload protection All Standard Condensers • 10 fins per inch spacing • Modular design with models in both single and double wide fan configurations • All Larkin condensers incorporate the Floating Tube' coil design, which virtually eliminates tube sheet Teaks • Internal baffles provided between all fan cells • Condensers up to 3 fans in length use 3/8" diameter tube to minimize refrigerant charge. Condensers 4 or more fans in length use 1/2" diameter tube to minimize refrigerant pressure drop • Coated steel fan guards • Weatherproof control panel with factory -mounted door interrupt disconnect switch • UL and UL listed for Canada Available Options: • Multi -circuiting at no additional charge • Optional 8, 12 or 14 FPI spacing • Fan -cycle control panels • Alternate coil construction including polyester coated fins, epoxy or phenolic coated fins and copper fins • Hinged fan panels for ease of servicing (Altus and 1140 Series only) • Side access panels • Extended condenser legs for increased ground clearance • Sealtite wiring • Frame for shipping 4 • Three solutions tailored to fit your unique needs. Choose from the Solus, Altus or 1140 Series of air-cooled condensers by Larkin. Choosing the Solus Series means you have an unmatched solution for capacity, sound and energy efficiency while the Altus Series offers excellence in capacity, sound and efficiency. Larkin continues to offer the 1140 RPM Series to meet high capacity needs without concerns for low sound and high efficiency. FEATURE 1140 SERIES T _JL ALTUS SERIES SO_ LUS SERIES [Motors a �--_ L _ __ -. Standard Motor 1140 RPM 830, 540 RPM Variable Speed EC Motors P66MotorOption v v (not required) Cabinet Standard Cabinet Galvanized Galvanized Aluminum Galvanized Option (standard) (standard) v Pre -Painted Galvanized Option v v v Aluminum Option v v (standard) Venturi Cover_____ _ _ �t :�_ __ Standard Venturi Removable Removable EC Tall Optimized Hinged Option v v - • Fan Blades Standard Blade Standard QuietEdge" EC Optimized [Motor Mount [ ServiceEase" EC Optimized Standard Motor Mount ServiceEaseT' Warranty __ T__ 2-Year Warranty v v v 3-Year Warranty - EC Motors - - v 5-Year Warranty - Floating Tube' v v v 5 NOMENCLATURE L T L - Larkin N H - S 04 f N -Vintage Motor H - 1140 RPM, 1.5 HP L - 830 RPM, 1.5 HP X - 830 RPM, 1.0 HP Q - 540 RPM, 0.5 HP E - Solus EC Motor A 050 --i- -I- Standard Capacity (MBH/°TD, R-22 @ 10 FPI) Model Identifier Width S - Single Wide D - Double Wide Fans 01-14 6 Condenser Selection Capacity for air-cooled condensers are based on Total Heat of Rejection (THR) at the condenser. Total heat of rejection is equal to net refrigeration at the evaporator (compressor capacity) plus the energy input into the refrigerant by the compressor (heat of compression). The heat of compression will vary depending on the compressor manufacturer, type of compressor and the operating conditions of the compressor. Whenever possible, it is recommended that you obtain the heat of compression value from the compressor manufacturer. If this is not available, the THR can be estimated using the following formula: THR = (Compressor Capacity) * (Heat of Compression Factor, Tables 1 & 2) Table 1 contains heat of compression factors for suction cooled compressors and Table 2 contains factors for open drive compressors. For refrigeration systems beyond the range of Tables 1 and 2, use the following equations to estimate THR: Open Compressors• THR = Compressor Capacity (BTUH) + (2545) * (Break Horsepower, BHP) Suction Cooled Compressors: THR = Compressor Capacity (BTUH) + (3413 *KW) The compressor capacity is effected by its altitude. If the condenser location is above sea level, an additional correction is required to the THR, as follows: THR (altitude) =THR * Altitude Correction Factor, Table 3 Selection Example Compressor capacity: Evaporator temperature: Condensing temperature: Ambient temperature Refrigerant: Compressor type: Condenser type: Condenser altitude: 350,000 +25° F 115° F 95° F R-22 Semi -hermetic, suction cooled 540 RPM, one row of fans 1,000 feet Step 1: Estimate Condenser THR From Table 1 for suction cooled compressors, at +25° F suction and 115° F condensing temperature, select a heat of compressor factor of 1.335. THR = Compressor Capacity * Heat of Compression Factor = 350,000 * 1.335 = 467,250 Step 2: Correct for Altitude From Table 3 obtain an altitude correction factor of 1.02 for 1,000 feet. THR =THR (from step 1) * Altitude Correction Factor (design) = 467,250 * 1.02 = 476,595 Step 3: Calculate Design Condenser T.D. Design Condenser T.D. = Condensing Temp - AmbientTemp =115 - 95 = 20° T.D. Step 4: Condenser Selection Condenser capacities for condensers with one row of fans at 540 RPM are located in Table 6. These capacities are given in MBH/°TD. Convert the THR calculated in step 2 to MBH/*TD by dividing by 1,000 to get THR in MBH. Then divide the THR by the design TD to get MBH/°TD. THR (MBH) = 476,595 / 1,000 = 476.6 THR (MBH/°TD) = 476.6 / 20 = 23.83 Locate the 10 FPI column for R-22 refrigerant and read down until you locate a value equal to or just larger than 23.83.This value is 25.9. Read horizontally to the left to obtain a condenser model of LNQ-S05-A026. Step 5: Calculate Actual T.D. and Condensing Temperature The actual condenser T.D. can be calculated by dividing the design THR by the condenser rating. Actual T.D. =THR (Design) / (Rating @ 1°T.D.) = 476.6 / 25.9 =18.4°F T.D. The actual condensing temperature is the actual T.D. plus the ambient temperature. Actual Condensing Temperature = (Actual T.D.) + (Ambient) = 18.4 + 95 = 113.4°F Table 1. Heat of Compression Factor for Suction Cooled Compressors. Suction Temp. °F -40° -30° -20° -10° 0° 5° 10° 15° 20° 25° 30° 40° 50° Condensing Temperature °F 90° 100° 110° 120° 1.56 1.49 1.43 1.38 1.34 1.31 1.29 1.26 1.24 1.22 1.2 1.17 1.13 1.63 1.55 1.49 1,43 1.38 1.36 1.34 1.31 1.28 1.26 1.24 1.2 1.16 1.72 1.62 1.55 1.49 1.43 1.41 1.39 1.36 1.33 1.31 1.28 1.24 1.2 1.81 1.7 1.62 1,55 1.49 1.48 1.44 1.41 1.38 1.36 1.33 1.28 1.24 130° 1.94 1.8 1.7 1.63 1.56 1.55 1.52 1.48 1.44 1.42 1.39 1.33 1.28 Table 2. Heat of Compression Factor for Open Drive Compressors Evaporator _ _Condensing Temperature °F _ _ Temp. °F 90° 100° 110° 120° 130° 140° -30° 1.37 1.42 1.47 - - - -20° 1.33 1.37 1.42 1.47 - - -10° 1.28 1.32 1.37 1.42 1.47 - 0° 1.24 1.28 1.32 1.37 1.41 1.47 5° 1.23 1.26 1.3 1.35 1.39 1.45 10° 1.21 1.24 1.28 1.32 1.36 1.42 15° 1.19 1.22 1.26 1.3 1.34 1.4 20° 1.17 1.2 1.24 1.28 1.32 1.37 25° 1.16 1.19 1.22 1.26 1.3 1.35 30° 1.14 1.17 1.2 1.24 1.27 1.32 40° 1.12 1.15 1.17 1.2 1.23 1.28 50° 1.09 1.12 1.14 1.17 1.2 1.24 Table 3. Altitude Correction Factors. _ Altitude _ 1 _ Correction Factor 0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 1 1.02 1.05 1.07 1.1 1.12 1.15 1.17 7 Multi -Circuiting Selection Multi -Circuiting Selection Procedure The air-cooled condensers are available with more than one refrigerant circuit. The condenser will be factory assembled with the condenser coil divided into individual refrigerant circuits, each sized Multi -Circuit Condenser Selection for its own specific application. Each circuit is supplied with its own inlet and outlet connections, individually labeled. Given four suction cooled compressors with conditions shown in Table with two rows of fans. The condenser location is at 3,000 ft. and the 4. The condenser shall have 830, 1.0 RPM fan motors, design ambient is 95°F. Selection Procedure Step 1: Input customer data in Table 4 in columns 1, 2, 3, 4 and 5. Step 2: From Table 1, select the heat of compression factor for suction cooled compressors and input into column #6. Step 3: From Table 3 obtain the altitude correction factor and input into column #7. Step 4: From Table 5 obtain the refrigerant capacity factor and input into column #8. Step 5: Calculate the design T.D. for each circuit by subtracting the ambient temperature from the circuit design condensing temperature and input into column #9. T.D. = Design Condensing Temperature - Ambient Temperature Step 6: Calculate the design THR / °T.D. for each circuit. Multiply column #5 by column #6 and column #7 to calculate the THR for each circuit. Divide the result by the refrigerant correction factor, column #8 to convert the capacities to a common refrigerant. Divide the result by the design T.D., column #9 to calculate the design THR / °T.D. and input into column #10. Design THR / °T.D. = Compressor Capacity (#5) * Heat of Compressor Factor (#6) x Altitude Factor (#7) Refrigerant Capacity Factor (#8) * Design T.D. (#9) Example for Circuit #1: Design THR / °T.D. = 235,000 * 1.31 * 1.07 1.02 x 15 = 21,529 BTUH / °T.D. Step 7: Add the design THR / °T.D. for each circuit in column #10, to get a total of 39,578 BTUH / °T.D. Divide this total by 1,000 to get 39.6 MBH / °T.D. Step 8: From Table 8 for two rows of condenser fans with 830 RPM, 1.0 HP fan motors, locate the column for R-404A capacity with 10 FPI. Read down the column until you get to a capacity equal to or greater than 39.6 MBH / °T.D. This value is 44.5 which corresponds to a LNX-D06-A045. From Table #9 obtain the total number of feeds available as 56. 8 Multi -Circuiting Condenser Table 4. Condenser Multi -Circuit Selection 1 2 Circuit Evap. Name Temp. °F 3 Design Cond. Temp. °F 4 Comp. Refrig. Type 22 5 X 6 ' Heat of Cap. X Com BTUH press. Factor 235,000 X 1.31 X X X 7 Alti- tude Factor 1.07 - 8 Refrig. ± Cap Factor - 1.02 - - ÷ 9 Design Cond. T.D. 15 = = _! = 10 Design THR/°TD 21,529 11 No. of Feeds per Circ. 31 12 13 Actual 1 Actual Cond. Cond. T.D. Temp. °F 13.1 108.1 1 25 110 2 20 . 110 .. ` 134a '"61,000 3X; ,".:.1 33 ' X 1.07. - .97 — 15 = 5,966` 8 141': 109.1? 3 -10 105 22 31,000 X 1.46 X 1.07 - 1.02 - 10 = 4,748 7 8.5 103.5 4 -20 105' 22 .46,000 X 1.52 X ' 1.07 .- 1.02 . = -10 = 7,335 10:. 9.2 104.2:;'. TOTAL 1 = 1 39,578 1 56 39,578 / 1,000 = 39.6 MBH/ °TD Step 9: Determine the number of feeds per circuit. Divide the design THR / °T.D. in column #10 by the total capacity required (39,578) and multiply this result by the number of feeds available, which is 56. Round this value to the nearest integer and place in column #11 Add the individual feeds per circuit to get a total number of feeds for the condenser. This total must equal the total number of feeds available for the condenser (56). Number of = Design THR / °T.D.(#10) * Number of Circuits Available (56) feeds/circuit Total Capacity Required (39,578) Step 10: Calculate actual condensing T.D., (ATD): ATD = Design T.D. (#9) * Design THR/°T.D. (#10) * Number of Feeds Available (56) Number Feeds / CIR (#11) * Condenser Capacity / °T.D. (Step #8) * 1,000 Example for Circuit #1: ATD = 15 * 21,529 x 56 — 13.1 °F 31 * 44.5 * 1,000 Input these T.D. values in column #12. Step 11: Calculate the actual condensing temperature. Actual condensing temperature is equal to the actual condensing T.D., column #12 plus the design ambient (95°). Input these values in Column #13. If the actual condensing temperature for each circuit is too high, it may be necessary to adjust the number of feeds per circuit or to select the next larger condenser size and recalculate the number of feeds per circuit. Table 5. Refrigerant Capacity Factor. Refrigerant Capacity Factor R-22 R-134a R-404A R-410A R-502 R-507: 1.02 0.97 1 1.02 1 9 ► lf�Z•�9im. CONDENSER CAPACITY Table 6. Altus LNQ Models, 540 RPM, 0.5 HP, 30" Fan Diameter LNQ 540 Model LNQ-S01-A005 8 FPI 4.6 R-22 1 MBH / 10 FPI 5.2 R-410A 1°TD 12 FPI 5.6 14 FPI 5.9 8 FPI 4.6 R-404A MBH / 10 FPI 5.1 1°TD 12 FPI 5.5 14 FPI 5.8 LNQ 501 A006 5.5 6;1 6:4 6.6 5.4 ` 5.9 6.2 6.5 LNQ-S02-A008 7.2 8.0 8.7 9.1 7.0 7.8 8.5 8.9 LNQ-S02-A010 9.4 10.3 10.8 11.8 9.2 10.1 10.6 11.6 LNQ-502-A011 10.8 11.5 11.9 12.3 10.6 11.2 11.7 12.0 LNQ-S03-A016 14.1 15.6 16.2 16.9 13.8 15.2 15.9 16.6 LNQ-503-A017 16.2 17.2 17.9 19.8 15.9 16.9 17.5 19.4 LNQ-SO4-A021 18.8 20.7 21.6 23.5 18.4 . 20.3- 21.2 23.0: LNQ-SO4-A023 21.6 22.9 23.8 24.5 21.2 22.4 23.3 24.0 LNQ-S05-A026 23.5 25.9 27.0 29.3 23.1 25.4 26.4 28.8, LNQ-S05-A029 27.0 28.6 29.8 30.7 26.5 28.1 29.2 30.1 LNQ-S06-A034 32.4 34.4 35.7 - 36.8 - = _ 31.8 33.7 35.0 36.1 LNQ-S07-A042 38.4 41.6 42.8 44.3 37.7 40.7 41.9 43.4 LNQ-D04-A016 14.3 16.0 17:3 18.2 14.0 15.6 16.9 17.9 LNQ-D04-A021 18.8 20.7 21.6 23.6 18.4 20.3 21.2 23.2 LNQ-D04-A023 21.6 22.9 23.8 24.5 21.2 22.4 23.3 24.0 LNQ-D06-A031 28.2 31.0 32.4 33.8 27.6 30.4 31.8 33.1 LNQ-D06-A034 32.4 34.4 35.7 39.5. 31.8 33.7 35.0 38.7 LNQ-D08-A041 37.6 41.4 43.2 47.0 36.9 40.6 42.3 46.1 LNQ-D08-A046 43.2 45.8 47.6 49.0 42.4 44.9 46.7 48.1 LNQ-D10-A052 47.0 51.8 54.0 58.7 46.1 50.7 52.9 57.5 LNQ-D10-A057 54.0 57.3 59.5 61.3 53.0 56.1 58.3 60.1 LNQ-D12-A069 64.8 68.7 71.4 73.6 63.6 67.3 70.0 72.1 LNQ-D14-A083 76.8 83.1 85.5 88.6 75.3 81.5 83.8 86.8 BOLD indicates standard model capacity. 10 CONDENSER SPECIFICATIONS Table 7. Altus LNQ Models, 540 RPM, 0.5 HP, 30" Fan Diameter LNQ 540 Model LNQ-501-A005 i CFM 5,400 208-230/3/60 FLA 3.5 MCA 15.0 MOPD 15 FLA 1.8 460/3/60 MCA 15.0 MOPD 15 Unit kW 0.4 Conn. (in.) 13/8 Max. No. of Feeds 7 Approx. Net Weight (Ibs) 330 LNQ-S01-A006 5,200 3.5 15.0 "° ` 15 1.8 15 0 15: 0.4 1 3/8 14 360 LNQ-502-A008 11,200 7.0 15.0 15 3.5 15.0 15 0.9 13/8 14 580 LNQ-502-A010 10,800 7.0 15.0 15 3.5 15.0 15 0.9 15/8 21 630 LNQ-502-A011 10,400 7.0 15.0 15 3.5 15.0 15 0.9 2 1/8 28 680 LNQ-S03-A016 16,100 10.5 15.0 - 20 5.3 15 0 15 � 1.3 '. 2 1/8 21 930i LNQ-503-A017 15,600 10.5 15.0 20 5.3 15.0 15 1.3 21/8 28 1,000 LNQ-SO4-A021 21,500 14.0 15.0 20 7.0 : 15.0 15 a _3 1.7 21/8 ; 21 1"210: LNQ-504-A023 20,800 14.0 15.0 20 7.0 15.0 15 1.7 2 5/8 28 1,310 LNQ-S05-A026: 26,900 17.5 20.0 25 8.8 15.0 15 2.2 2 5/8 21 1,510 LNQ-505-A029 26,000 17.5 20.0 25 8.8 15.0 15 2.2 2 5/8 28 1,640 LNQ-506-A034 31,200 21.0 - 21.9. 30 10.5 15.0 15 2.6 25/8 , 28 ' 1,950 LNQ-507-A042 36,400 24.5 25.4 35 12.3 15.0 15 3.1 2 @ 2 5/8 28 2,240 LNQ-D04-A016 22,300 14.0 15.0 20 7.0 15.0 15 ` 1.7 2 @ 1 3/8 28 1,240 LNQ-D04-A021 21,500 14.0 15.0 20 7.0 15.0 15 1.7 2 @ 1 5/8 42 1,340 LNQ-D04-A023 20,800 14.0 15.0 20 7.0 15.0 , 15 1.7 2 @ 2 1/8 56 1,440 LNQ-D06-A031 32,300 21.0 21.9 30 10.5 15.0 15 2.6 2 @ 2 1/8 42 1,990 LNQ-D06-A034 31,200 21.0 21.9 30 10.5 15.0 a. 15 2.6 2 @ 2 1 /8 , :.',56 2,140 LNQ-D08-A041 43,000 28.0 28.9 35 14.0 15.0 15 3.5 2 @ 21 /8 42 2,630 LNQ-D08-A046 41,600 28.0 28.9 35 14.0 15.0 15 3.5 2 @ 2 5/8 56 2,836 LNQ-D10-A052 53,700 35.0 35.9 45 17.5 20.0 20 4.4 2 @ 2 5/8 42 3,290 LNQ-D10-A057 52,100 35.0 35.9 45 17.5 20.0 20 4.4 2 @ 2 5/8 56 3,540 LNQ-D12-A069 62,500 42.0 42.9 50 21.0 21.4 25 5.2 2 @ 2 5/8 56 4,230 LNQ-D14-A083 72,900 49.0 49.9 50 , 24.5 24.9 25 6.1 4 @ 2 5/8 56 4,910' riTninWIMI 7 11 =FZtlwQ CONDENSER CAPACITY Table 8. Altus LNX Models, 830 RPM, 1.0 HP, 30" Fan Diameter LNX 830 Model LNX-S01-A006 8 FPI 5.6 R-221 MBH / 10 FPI 6.4 R-410A 1°TD 12 FPI 7.0 14 FPI 7.4 8 FPI 5.5 R-404A MBH / 10 FPI 6.2 1°TD 12 FPI 6.8 14 FPI 7.3 LNX-S01-A008 6.8 7.5 8.1 8.4 6.6 7.4 7.9 8.3 LNX-502-A010 8.8 9.8 10.6 11.3 8.6 9.6 10.4 11.0 LNX-S02-A013 12.0 13.1 13.8 14.8 11.8 12.8 13.6 14.5 LNX-S02-A015 14.0 15.1 15.7 16.0 13.7 14.8 15.3 15.7 LNX S03 A020 18.0 19.7 20.8 21.8. 17.7 19.3 20.4 21.4 LNX-S03-A023 21.0 22.7 23.5 25.3 20.5 22.3 23.0 24.8 LNX-504-A026 24.1 26.3 27.7 29.3 23.6 25.7 27.1 28.8 LNX-504-A030 27.9 30.3 31.3 32.0 27.4 29.7 30.7 31.4 LNX-S05-A033 30.1 32.8 34.6 36.7 29.5. 32.1 33.9 36.0 LNX-505-A038 34.9 37.8 39.2 40.1 34.2 37.1 38.4 39.3 LNX-506-A045 41.9 45.4 47.0 48.1 41.1 44.5 46.1 47.1 LNX-507-A052 47.7 52.0 54.8 56.1 46.8 51.0 53.7 55.0 LNX-D04-A020 17.5 19.6 21.2 22.5 17.2 19.2 20.8 22.0 LNX-D04-A026 24.1 26.2 27.7 29.7 23.6 25.7 27.1 29.1 LNX-D04-A030 27.9 30.3 31.3 32.0 27.4 29.7 30.7 31.4 LNX-D06-A039 36.1 39.4 41.5 43.7 35.4 38.6 40.7 42.8 LNX-D06-A045 41.9 45.4 47.0 50.6 41.1 44.5 ' 46.1 49.6 LNX-D08-A052 48.1 52.5 55.4 58.6 47.1 51.4 54.3 57.5 LNX-D08-A061 55.9 60.6 62.7 64.1 54.8 59.3 61.4 62.8 LNX-D10-A066 60.1 65.6 69.2 73.5 58.9 64.3 67.8 72.0 LNX-D10-A076 69.9 75.7 78.3 80.1 68.5 74.2 76.8 78.5 LNX-D12-A091 83.8 90.8 94.0 96.1 82.1 89.0 92.1 94.2 LNX-D 14-A104 95.5 104.1 109.6 112.2 93.6 102.0 107.5 110.1 BOLD indicates standard model capacity. 12 CONDENSER SPECIFICATIONS Table 9. Altus LNX Models, 830 RPM, 1.0 HP, 30" Fan Diameter LNX 830` Model LNX-S01-A006 CFM 7,600 208-230/3160 FLA 4.8 MCA 15.0 MOPD 15 FLA 2.4 460/3/60 MCA 15.0 MOPD 15 Unit kW 1.1 Conn. (in.) 13/8 Max. No. of Feeds 7 Approx. Net Weight (Ibs) 330 LNX-S01-A008 7,300 4.8 15.0 15 2.4 15.0 15 1.1 1 3/8 14 360 LNX-502-A010 15,900 9.6 15.0 20 4.8 15.0 15 2.2 13/8 14 580 LNX-S02-A013 15,200 9.6 15.0 20 4.8 15.0 15 2.2 1 5/8 21 630 LNX-502-A015 14,700 9.6 15.0 20 4.8 15.0 15 2.2 2 1/8 28 680 LNX-S03-A020 22,900 14.4 20.0 25 7.2 15.0 15. 3.4 21/8 21 930 LNX-503-A023 22,000 14.4 20.0 25 7.2 15.0 15 3.4 21/8 28 1,000 LNX-SO4-A026 29,800 19.2 20.4 30 9.6 15.0 . 15 4.5 2 1/8 21 1,210' LNX-504-A030 28,400 19.2 20.4 30 9.6 15.0 15 4.5 2 5/8 28 1,310 LNX-S05-A033 37,300 24.0 25.2 35 12.0 15.0 15 5.6 2 5/8 21 1,510 LNX-505-A038 35,500 24.0 25.2 35 12.0 15.0 15 5.6 2 5/8 28 1,640 LNX-S06-A045 42,600 28.8 30.0 40 14.4 20.0 20 6.7 2 5/8 28 1,950 LNX-507-A052 49,700 33.6 34.8 45 16.8 20.0 20 7.8 2 @ 2 5/8 28 2,240 LNX-D04-A020 31,700 19.2 20.4 30 9.6 15.0 15 4.5 2 @ 1 3/8 28 1,240 'e LNX-D04-A026 30,500 19.2 20.4 30 9.6 15.0 15 4.5 2 @ 1 5/8 42 1,340 LNX-D04-A030 29,300 19.2 20.4 30 9.6 15.0 15 4.5 2 @ 2.1/8 - 56 1,440 LNX-D06-A039 45,700 28.8 30.0 40 14.4 20.0 20 6.7 2 @ 2 1/8 42 1,990 LNX-D06-A045 44,000 28.8 30.0 40 14.4 20.0 20 6.7 2 @ 2`1/8 56 2,140 LNX-D08-A052 59,700 38.4 39.6 50 19.2 20.0 25 8.9 2 @ 2 1/8 42 2,630 LNX-D08-A061 56,800 38.4 39.6 50 19.2 20.0 25 8.9 2 @ 2 5/8 56 2,830 LNX-D10-A066 74,600 48.0 49.2 60 24.0 24.6 30 11.2 2 @ 2 5/8 42 3,290 LNX-D10-A076 71,000 48.0 49.2 60 24.0 24.6 30 11.2 2 @ 2 5/8 56 3,540, LNX-D12-A091 85,200 57.6 58.8 70 28.8 29.4 35 13.4 2 @ 2 5/8 56 4,230 LNX-D14-A104 99,400 67.2 68.4 80 33.6 34.2 40 15.6 4 @ 2 5/8 56 4,910 nmm 13 ilizilln CONDENSER CAPACITY Table 10. Altus LNL Models, 830 RPM, 1.5 HP, 30" Fan Diameter LNL ' 830 Model LNL-S01-A007 8 FPI 5.9 R-22 I MBH/1°TD 10 FPI 6.7 R-410A 12 FPI 7.3 14 FPI 7.9 8 FPI 5.8 R-404A MBH/1°TD 10 FPI 6.6 12 FPI 7.2 14 FPI 7.7 LNL-S01-A008 7.2 8.0 86 9.0 7.0 7.8 .., 8.4 8.8 LNL-502-A010 9.1 10.1 11.0 11.7 8.9 9.9 10.8 11.4 LNL-S02-A014 12.6 13.9 14.9 15.7 12.4 13.6 14.6 15.4 LNL-502-A016 15.0 16.1 16.8 17.6 14.7 15.8 16.5 17.3 LNL-S03-A021 19.0 20.9 22.3 23.4 18.6 20.5 _ ,- 21.8 23.0 LNL-S03-A024 22.5 24.2 25.2 26.9 22.0 23.8 24.7 26.3 LNL-SO4-A028 25.3 27.8 29.7 .: 31.2 24.8 27.3 29.1 30.6 LNL-504-A032 30.0 32.3 33.6 35.2 29.4 31.7 32.9 34.5 LNL-505-A035 32.1, 35.5 37.4 39.0 31.4 ;; 34.7 36.6 , 38.2 LNL-505-A042 38.4 41.6 43.4 44.7 37.7 40.8 42.5 43.8 LNL S06 A050 46.1 49.9 52.T 53.6 45.2` 48.9 514.0 52.6 LNL-507-A055 50.5 55.0 58.0 60.2 49.5 53.9 56.8 59.0 LNL-D04-A020 18.1 20.2 22.0 23.3 17.7 19.8 21.5 22.9 LNL-D04-A028 25.3 27.8 29.7 31.4 24.8 27.3 29.1 30.7 LNL-D04-A032 30.0 32.3 33.6 35.2 29.4 ' '31.7 "° , 32.9 34.5 LNL-D06-A042 37.9 41.8 44.5 46.9 37.2 40.9 43.7 45.9 • LNL-D06-A048 45.0 48.4 50.4 53.7 44.1 ' ' 47.5 49.4 . 52.7 LNL-D08-A056 50.6 55.7 59.4 62.4 49.6 54.6 58.3 61.1 LNL-D08-A065 60.0 64.6 67.2 70.4 58.8 63.3 65.8 69.0 '. LNL-D10-A071 64.2 70.9 74.7 78.0 62.9 69.5 73.2 76.5 LNL-D10-A083 76.9 83.1 86.8 89.4 75.3 81.5 85.0 87.6 LNL-D12-A100 90.4 99.8 104.1 107.3 92.2 97.8 102.0 105.1 LNL-D14-A110 101.1 110.0 116.0 120.3 99.1 107.9 113.7 117.9 BOLD indicates standard model capacity. 14 CONDENSER SPECIFICATIONS Table 11. Altus LNL Models, 830 RPM, 1.5 HP, 30" Fan Diameter LNL 830 • Model LNL-S01-A007 CFM 8,400 208-230/3/60 FLA 6.6 MCA 15.0 MOPD 25 FLA 3.3 460/3/60 MCA 15.0 MOPD 15 FLA 2.6 575/3/60 MCA 15.0 MOPD 15 Unit kW 1.4 Conn. (in.) 13/8 Max. No. of Feeds 7 Approx. Net Weight (Ibs) 330 LNL-501-A008 8,000 6.6 15.0 25 - 3.3 15.0 15 2.6 15.0 15 1.4 1 3/8 14 360'`1t LNL-S02-A010 17,500 13.2 15.0 30 6.6 15.0 15 5.2 15.0 15 2.7 13/8 14 580 LNL-S02-A014 : 16,700 13.2 15.0 30 6.6 15.0 15 5.2 15.0 15 2.7 1 5/8 21 630 LNL-502-A016 16,100 13.2 15.0 30 6.6 15.0 15 5.2 15.0 15 2.7 21/8 28 680 LNL-S03-A021 _ 25,100 19.8 21.5 ` '35 9.9 15.0 15 7.8 15.0 15 41. 21/8 21 930 LNL-503-A024 24,100 19.8 21.5 35 9.9 15.0 15 7.8 15.0 15 4.1 21/8 28 1,000 LNL-SO4-A028 32,800 26.4 28.1 45 13.2 15.0 20 10.4 15.0 15 5.4 21/8 21 1,210 LNL-504-A032 31,200 26.4 28.1 45 13.2 15.0 20 10.4 15.0 15 5.4 25/8 28 1,310 LNL-505-A035'= 41,000 33.0 34.7 50.- 16.5 20.0 25 13.0 15.0 '20 6.8` 25/8 ��` 21 ' 1510 LNL-505-A042 39,100 33.0 34.7 50 16.5 20.0 25 13.0 15.0 20 6.8 2 5/8 28 1,640 LNL-S06-A050 46,900 39.6 41.3 50 19.8 20.6 25 15.6 20.0 20 8.1 25/8 28 1,950 LNL-507-A055 54,700 46.2 47.9 60 23.1 23.9 30 18.2 20.0 25 9.5 2 @ 2 5/8 28 2,240 LNL-D04-A020 35,000 26.4 28.1 45 13.2 15.0 20 10.4 15.0 15 5.4 2 @ 1 3/8 28 1,240 LNL-D04-A028 33,500 26.4 28.1 45 13.2 15.0 20 10.4 15.0 15 5.4 2 @ 1 5/8 42 1,340 LNL-D04-A032 32,100 ' 26.4 28.1 45 `' 13.2 15.0 20 10.4 15.0 15 5.4 2 @ 2 1/8 56, 1 LNL-D06-A042 50,200 39.6 41.3 50 19.8 20.6 25 15.6 20.0 20 8.1 2 @ 2 1/8 42 1,990 LNL-D06-A048 48,200 39.6 41.3 50 19.8` 20.6 25 15.6 20.0" 20 8.1 2@21/8 56 2,140 LNL-D08-A056 65,600 52.8 54.5 70 26.4 27.2 35 20.8 21.5 25 10.8 2 @ 2 1/8 42 2,630 LNL-D08-A065 62,500 52.8 54.5 70 26.4 27.2 35 20.8 21.5 25 10.8 2 @ 2 5/8 56 2,830 LNL-D10-A071 82,000 66.0 67.7 80 33.0 33.8 40 26.0 26.7 30 13.5 2 @ 2 5/8 42 3,290 LNL-D10-A083 78,100 66.0 67.7 80 33.0 33.8 40 26.0 26.7 30 13.5 2 @ 2 5/8 56 3,540 LNL-D12-A100 93,700 79.2 80.9 90 39.6 40.4 45 31.2 31.9 35 16.2 2 @ 2 5/8 56 4,230 LNL-D14-A110 109,300 92.4 94.1 110 46.2 47.0 50 36.4 37.1 40 18.9 4 @ 2 5/8 56 4,910 Ua. M 15 i Llk Larkin Solus Series Selection Tables The new Larkin Solus Series of air-cooled condensers incorporates EC motor technology to provide the quietest and most efficient condensers in the industry, using integrated variable speed technology. Simplicity: Variable speed without the complexity The Larkin Solus Series is a complete system that incorporates an EC motor, integrated drive and control electronics, optimized swept motor blade and venturi panel in one simple package. Variable speed is accomplished without the complexities typically associated with Variable Frequency Drives. Flexibility: Maximum efficiency, minimum sound, capacity when you need it The Solus Series condensers' integrated variable speed capability allows optimization to your operating conditions; at higher speeds on hot summer afternoons to maintain capacity or at lower speeds at night to meet a local sound ordinance. Whatever your requirements, the Larkin Solus Series can be selected and programmed to your specific needs; whether it is lower energy costs, lower sound or both. Reliability:The highest quality backed by industry - leading warranties We are confident in the reliability of the EC motor that we are providing an unprecedented 3-year warranty on the EC motor (2-year warranty on the unit) so you can be assured of worry -free operation. BS ec 75 70 jg se as Protection at every level The EC motors have several built-in features that protect against locked -rotors, under -voltage protection and phase failure. Variable Speed Operation The Solus Series condensers provide variable speed operation automatically; providing dramatically lower sound and energy levels than would be observed with condensers using traditional AC motors. Typical performance of a Solus Series condenser at various loads versus a 540 RPM or 1140 RPM condenser is shown in the charts on the next page. Model Selection Selecting the right Larkin Solus Series unit for your needs is easier than you think, and is just as easy as selecting a standard unit. Simply use Table 12 to find the model and fins per inch required to meet your capacity needs. Selecting condensers with specific sound or energy levels The variable speed nature allows selection to meet maximum sound or energy usage levels. To select condensers with these goals in mind, please contact your Larkin sales representative. They can help you select the appropriate model for your specific requirements. Solus Series Sound Data (dBA @ 10 ft.) -F�.LNE (iin0 RPM) --10" Lr' (830 RPM) ENE (030 RPM) "" ' LM (420 RPM) I LNC 1030 LNE LNE 630 J LNE 420 0 2 NtiR7bef or FaifS 10 12 14 Fans 1 BNE 1030 RPM 66.9 BNE 830 RPM 62.0 BNE 630 RPM 52.9 BNE 420 RPM 45.3 2 69.9 65.0 55.9 48.3 3 71.7 66.8 57.7 50.1 4 72.9 68.0 58.9 51.3 5 73.9 69.0 59.9 52.3 6 74.7; 69.8 60.7 :_53.1 7 75.4 70.5 61.4 53.8 8 75.9 71.0 61.9 ' 54.3,_ 10 76.9 72.0 62.9 55.3 12 77.7 72.8 63.7 56.1 14 78.4 73.5 64.4 56.8 16 Power Consumption (kW) 25 20 15 10 Power Consumption Comparison 10 Fan EC Motor Condenser vs. 14 Fan 540 RPM Condenser and 10 Fan 1140 RPM Condenser (Capacity - 83 MBH/°TD) Typical Operating Range 14 Fan 540 RPM (83.1 MBH/ TD) �< 10 Fan 1140 RPM (82 6 MBH/°TD1. • 11T 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% % of Load Requirement 10 Fan EC Motor Sound Production at Various Loads 60% 70% 80% 90% 1 00% Percent of Max. Load 30% 40% 50% RPM 215 313 407 511 630 748 892 1,030 dBA @ 10 ft 49.5 51.8 55 58.4 62.9 67.8 74.8 76.9 17 itijIL CONDENSER CAPACITY Table 12. Solus LNE Models, 2.2 kW, 31.5" Fan Diameter LNE EC" Model LNE-501-A008 8 FPI 6.8 R-22 I MBH 10 FPI 7.7 R-410A 1°TD 12 FPI 8.5 14 FPI 9.1 8 FPI 6.6 R-404A MBH 11°TD 10 FPI 7.6 12 FPI 8.3 14 FPI 9.0 LNE-501-A009 8.3 9.3 10.0 10.6 8.1 9.1 9.8 10.4 LNE-S 02-A 011 10.2 11.3 12.4 13.1 10.0 11.1 12.1 12.9 LNE-502-A015 13.9 15.4 16.5 17.3 , 13.6 15.1 16.2 17.0 .: LNE-502-A018 16.6 18.1 19.2 20.3 16.3 17.8 18.8 19.9 LNE-503-A023 20.9 23.1 24.8 25.9 20A 22.7 24.3 25.4 LNE-503-A027 24.9 27.2 28.7 31.7 24.4 26.7 28.2 31.1 LNE-504-A031 27.8 30.8 33.0 34.6 272 30.2 32.4 33.9 LNE-504-A036 33.2 36.3 38.3 40.6 32.6 35.5 37.5 39.8 LNE-S05-A039 35.6 39.3 41.6 43.8 34.9 38.5 40.8 42.9 LNE-S05-A047 43.0 46.6 48.8 51.5 42.1 45.7 47.8 50.5 LNE-506-A056 51.6 56.0 58.6 61.8 50.5 54.8 57.4 60.5 LNE-507-A065 58.7 64.6 68.6 71.6 57.6 63.3 67.3 70.2 LNE-D04-A023 20.4 22.7 24.8 26.2 19.9 22.2 24.3 25.7 LNE-D04-A031 27.8 30.8 33.1 34.6 27.2 30.2 32.4 33.9 LNE-D04-A036 33.2 36.3 38,3 40.6 32.6 35.5 '37.5 39.8 xr; LNE-D06-A046 41.7 46.2 49.5 51.9 40.9 45.3 48.6 50.8 LNE-D06-A054 49.8 54.4 57.4 63.4 48.8 53.3 56.3 62.2 LNE-D08-A062 55.6 61.7 66.1 69.2 54.5 60.5 64.7 67.8 LNE-D08-A073 66.5 72.5 76.6 81.3 65.2 71.1 75.1 79.7 LNE-D10-A079 71.1 78.6 83.2 87.5 69.7 77.0 81.6 85.8 LNE-D10-A093 85.9 93.3 97.6 103.0 84.2 91.4 95.7 100.9' LNE-D 12-A 112 103.1 111.9 117.1 123.6 101.0 109.7 114.8 121.1 LNE-D 14-A 129 117.5 129.2 137.2 143.1 115.2 126.7 134.5 140.3 BOLD indicates standard model capacity. 18 CONDENSER SPECIFICATIONS Table 13. Solos LNE Models, 2.2 kW, 31.5" Fan Diameter LNE EC - Model LNE-501-A008 CFM 11,000 FLA 7.0 208-230/3/60 MCA 15.0 MOPD 25 FLA 3.5 460/3/60 MCA 15.0 MOPD 15 Unit kW 2.2 Conn. (in.) 13/8 Max. Number of Feeds 7 Approx. Net Weight (Ibs) 330 LNE-501-A009 10,500 7.0 15.0 25 3.5 15.0 15 2.2 13/8 14 360 LNE-502-A011 23,400 14.0 20.0 35 7.0 15.0 15 4.4 13/8 14 590 LNE-502-A015 22,000 14.0 20.0 35 7.0 15.0 15 4.4 1 5/8 21 640 LNE-S02-A018 20,900 14.0 20.0 35 7.0 15.0 15 4.4 21/8 28 690 LNE-S03-A023 33,100 21.0 22.8 40 10.5 15.0 20 6.6 21/8 21 930 LNE-503-A027 31,400 21.0 22.8 40 10.5 15.0 20 6.6 21/8 28 1,010 LNE-SO4-A031 42,600 28.0 29.8 .. 45 14.0 15.0 20 , 8.8 21/8 21 1,220 LNE-504-A036 40,000 28.0 29.8 45 14.0 15.0 20 8.8 2 5/8 28 1,320 LNE-505-A039 53,200 35.0 36.8 50 17.5 20.0 „ 25 - 11.0 25/8 21 1,520 LNE-505-A047 50,000 35.0 36.8 50 17.5 20.0 25 11.0 2 5/8 28 1,650 LNE-506-A056 60,000 42.0 43.8 60 21.0 21.9 30 13.2 2 5/8 28 1,960 LNE-507-A065 70,000 49.0 50.8 70 24.5 25.4 ' 35 15.4 2 @ 2 5/8 28 2,260 LNE-D04-A023 46,700 28.0 29.8 45 14.0 15.0 20 8.8 2 @ 1 3/8 28 1,290: LNE-D04-A031 44,100 28.0 29.8 45 14.0 15.0 20 8.8 2 @ 1 5/8 42 1,390 LNE-D04-A036 41,800 28.0 29.8 45 14.0 15.0 20 8.8 2 @ 2 1/8 56 1 490 LNE-D06-A046 66,100 42.0 43.8 60 21.0 21.9 30 13.2 2 @ 2 1/8 42 2,060 LNE-D06-A054 62,700 42.0 43.8 60 21.0 21.9 30 13.2 2 @ 2 1/8 56 2,210 LNE-D08-A062 85,100 56.0 57.8 70 28.0 28.9 35 17.6 2 @ 2 1/8 42 2,730 LNE-D08-A073 80,000 56.0 57.8 70 28.0 28.9 35 17.6 2 @ 2 5/8 56 2,930' LNE-D10-A079 106,400 70.0 71.8 90 35.0 35.9 45 22.0 2 @ 2 5/8 42 3,410 LNE-D10-A093 100,100 70.0 71.8 90 35.0 35.9 45 22.0 2 @ 2 5/8 56 3,660 LNE-D12-A112 120,100 84.0 85.8 100 42.0 42.9 50 26.4 2 @ 2 5/8 56 4,370 LNE-D14-A129 140,100 98.0 99.8 110 49.0 49.9 50 30.8 4 @ 2 5/8 56 5,070 • 7 19 �n 1140 Series For customers seeking an economical solution to their capacity requirements, Larkin now offers the 1140 RPM Series with enhancements to improve capacity and serviceability. The 1140 Series features a broader product range with capacities ranging from 15 to 249 nominal tons to address all applications. New features include: • Larkin's patent -pending ServiceEaseTM motor mount • New, high efficiency condenser coil designed for optimum performance • Expanded product range from 15 to 249 nominal tons • Galvanized steel cabinet with options for aluminum or painted galvanized steel Standard Features • 10 fins per inch spacing • Modular design with models in both single and double wide fan configurations. • All Larkin condensers incorporate the Floating Tube' coil design which virtually eliminates tube sheet leaks. • Internal baffles provided between all fan cells • Condensers up to 3 fans in length use 3/8"diameter tube to minimize refrigerant charge. Condensers 4 or more fans in length use 1/2 diameter tube to minimize refrigerant pressure drop • Coated steel fan guards • Weatherproof control panel with factory mounted door interrupt disconnect switch • UL and UL listed for Canada Available Options • Multi -circuiting at no additional charge • Optional 8, 12 or 14 FPI spacing • Fan -cycle control panels • Alternate coil construction including polyester coated fins, epoxy or phenolic coated fins and copper fins • Hinged fan panels for ease of servicing • Side access panels • Extended condenser legs for increased ground clearance • Sealtite wiring 20 CONDENSER CAPACITY LNH Table 14. Larkin 1140 Series LNH Models, 1140 RPM, 1.5 HP, 30" Fan Diameter 1140 Model LNH-501-A007 8 FPI 6.4 R-22 I MBH/ 10 FPI 7.3 G-410A 1°TD 12 FPI 8.0 14 FPI 8.6 8 FPI 6.3 R-404A MBH 10 FPI 7.2 I1°TD 12 FPI 7.9 14 FPI 8.5 H Cki •i 1 VI !► LNH-S01-A009 7.8 8.7 9.5 10.0 7.6 8.6 9,3 9.8 LNH-502-A011 9.6 10.7 11.7 12.4 9.4 10.5 11.5 12.1 LNH-502-A015 13.1 14.5 15.6 16.3 12.8 14.2 15.3 16.0 LNH-S02-A017 15.7 17.1 18.1 19.2 15.3 16.7 17.7 18.8 LNH-503-A022 19.7 21.8 23.4 24.5 19.3 21.4 22.9 24.0 LNH-503-A026 23.5 25.7 27.1 29.9 23.1 25.2 26.6 29.3 LNH-504-A029 26.2 29.1 31.2 32.6 25.7 28.5 30.5 32.0 LNH-504-A034 31.4 34.2 36.1 38.3 30.7 33.5 35.4 37.6 LNH-505-A037 33.6 37.1 39.3 41.3 32.9 36.4 38.5 40.5 LNH-505-A044 40.5 44.0 46.1 48.6 39.7 43.1 45.1 47.6 LNH-506-A053 48.6 52.8 55.3 58.3 47.7 51.7 54.1 57.1 LNH-507-A061 55.4 61.0 64.7 67.5 54.3 59.8 63.5 66.2 LNH-D04-A021 19.2 21.4 23.4 24.8 18.8 21.0 22.9 24.3 LNH-D04-A029 26.2 29.1 31.2 32.6 25.7 28.5 30.6 32.0144* LNH-004-A034 31.4 34.2 36.1 38.3 30.7 33.5 35.4 37.6 I NH-n(16-4044 39 4 43 6 46 7 48 9 38 6 42 8 45 8 47 9 LNH-D06-A051 47.0 51.3 54.2 59.8 46.1 50.3 53.1 58.7 LNH-D08-A058 52.5 58.2 62.3 65.3 51.4 57.0 61.1 63.9 LNH-D08-A068 62.7 68.4 72.3 76.7 61.5 67.1 70.8 75.1 I NH-D10-A074 67.1 74.2 78.5 82.6 65.7 72.7 76.9 80.9 LNH-D10-A088 81.0 88.0 92.1 97.2 79.4 86.2 90.2 95.2 LNh-UI2-AI00 9/.2 IUD.O 11O. 110.0 9 .3 IU3.3 I '..5 tI,.L LNH-D 14-A 122 110.8 121.9 129.5 135.0 108.6 119.5 126.9 132.4 BOLD indicates standard model capacity. 21 .�TIFJC CONDENSER SPECIFICATIONS LNH Table 15. 1140 Series BNH Models, 1140 RPM, 1.5 HP, 30" Fan Diameter 1140 Model LNH-S01-A007 CFM 9,900 208-230/3/60 FLA 7.0 MCA 15.0 MOPD 25 FLA 3.5 460/3/60 MCA 15.0 MOPD 15 FLA 2.8 575/3/60 MCA 15.0 MOPD 15 Unit kW 1.9 Conn. (in.) 13/8 Max. No. of Feeds 7 Approx. Net Weight (Ibs) 330 LNH-S01-A009 9,500 7.0 15.0 25 3..5 15.0 15 2.8 15.0 15 1.9 . 13/8 14 360 LNH-S02-A011 20,500 14.0 20.0 35 7.0 15.0 15 5.6 15.0 15 3.8 13/8 14 580 LNH-502-A015 19,800 14.0 20.0 35 7.0 15.0 15 5.6 15.0 15 3.8 15/8 21 630 LNH-502-A017 19,000 14.0 20.0 35 7.0 15.0 15 5.6 15.0 15 3.8 21/8 28 680 LNH-503-A022 29,700 21.0 22.8 40 10.5 15.0 20 8.4 15.0 15 5.8 21/8 21 930 LNH-S03-A026 28,500 21.0 22.8 40 10.5 20 20 8.4 15.0 15 5.8 21/8 28 1,000 LNH-504-A029 38,600 28.0 29.8 45 14.0 15.0 20 11.2 15.0 15 7.7 21/8 21 1,210 LNH-504-A034 37,000 28.0 29.8 45 14.0 15.0 20 11.2 15.0 15 7.7 2 5/8 28 1,310 LNH-505-A037 48,300 35.0 36.8 50 17.5 20.0 25 14.0 15.0 20 9.6 2 5/8 21 1,510 LNH-505-A044 46,200 35.0 36.8 50 17.5 20.0 25 14.0 15.0 20 9.6 25/8 28 1,640 LNH-S06-A053 55,400 42,0 43.8 60 21.0 21.9 30 16.8 20.0 25 11.5 2 5/8 28 1,950 LNH-S07-A061 64,700 49.0 50.8 70 24.5 25.4 35 19.6 20.3 25 13.5 2 @ 2 5/8 28 2,240 LNH-D04-A021 41,000 28.0 29.8 45 14.0 15.0 20 11.2 15.0 15 7.7 2 @ 1 3/8 28 1,240 LNH-D04-A029 39,600 28.0 29.8 45 14.0 15.0 20 11.2 15.0 15 7.7 2 @ 1 5/8 42 1,340 LNH-D04-A034 38,100 28.0 29.8 45 14.0 15.0 20 11.2 15.0 15 7.7 2 @ 2 1/8 56 1,440 LNH-D06-A044 59,400 42.0 43.8 60 21.0 21.9 30 16.8 20.0 25 11.5 2@21/8 42 1,990 LNH-D06-A051 57,100 42.0 43.8 60 21.0 21.9 30 16.8 20.0 25 11.5 2 @ 2 1/8 56 2,140 LNH-D08-A058 77,200 56.0 57.8 70 28.0 28.9 35 22.4 23.1 30 15.4 2 @ 2 1/8 42 2,630 LNH-D08-A068 73,900 56.0 57.8 70 28.0 28.9 35 22.4 23.1 30 15.4 2 @ 2 5/8 56 2,830 LNH-D10-A074 96,500 70.0 71.8 90 35.0 35.9 45 28.0 28.7 35 19.2 2 @ 2 5/8 42 3,290 LNH-D10-A088 92,400 70.0 71.8 90 35.0 35.9 45 28.0 28.7 35 19.2 2 @ 2 5/8 56 3,540 LNH-D12-A106 110,900 84.0 85.8 100 42.0 42.9 50 33.6 34.3 40 23.1 2 @ 2 5/8 56 4,230 LNH-D14-A122 129,400 98.0 99.8 110 49.0 49.9 50 39.2 39.9 45 26.9 4 @ 2 5/8 56 4,910 22 CONDENSER DIMENSIONS End Views Single Row of Fans Double Row of Fans 49 13 875 DIA. MTG. HOLES TYP. 45.43 42.43 --�i 38.00 ---Ji 88.0 85.0 80.50 49 13 .875 DIA. MTG. HOLES TYP. 73 4AIR FLOW 20.25 T-[ 53 59 1x 127 AIR FLOW 20.25 106 112 180 AIR FLOW t 20.25 o .71 53 233 53 165 53 ,AIR FLOW I � tio 106 218 106 QAIR FLOW ¢ 20.25 I.- 53 53 53 271 339 53 53 QAIR FLOW 20.25 �53 53 53 392 324 53 53 53 AIR FLOW 20.25 9 1 53 53 53 53 377 53 53 53 1 x 5 2x5 1 x6 2x6 1 x7 2x7 23 Fan Cycle Control Panels Fan cycling panels are available to cycle fans on ambient temperature or condensing pressure or custom built control panels can be factory installed to interface with electronic refrigeration controllers. • All fans are cycled with contactors. • Condensers with a single row of fans cycle fans separately with one contactor per fan. • Condensers with two rows of fans cycle fans in pairs, with one contactor for every pair of fans. • Fans closest to the header end of the unit run continuously Ambient Fan Cycle Condenser fans are controlled by ambient temperature using electronic temperature controls. Ambient fan cycling is recommended for mufti -circuited condensers or single circuit condensers where there is little variation in condenser load. Ambient fan cycling is limited in its ability to control head pressure to mild ambient conditions, see Table 16 for minimum ombients for fan cycling. Full year head pressure c4ontrol can Pressure Fan Cycling Condenser fans are controlled by pressure switches which monitor condenser pressure. Pressure fan cycling is ideal for those condensers which see a significant change in condenser load. Since the controls sense condensing pressure, they can cycle fans at any ambient temperature, in response to a change in condensing pressure. +. Table 16. Minimum Ambient for Fan Cycling • Standard control circuit voltage is 230 volts. Control circuits with 24 or 115 volts are available on request. • Control circuits are factory wired to a control circuit terminal board for convenient single point field wiring. Standard control circuits require an external power supply for powering control circuit (by others). A control circuit transformer is available on 460 volt condensers as a factory mounted option to provide power to the control circuit. be obtained by combining ambient fan cycling with another means of head pressure control, such as condenser flooding controls or variable speed. Combining these controls with ambient fan cycling has the additional advantage of reducing the amount of refrigeran required to flood the condenser. See Table 17 for typical settings for ambient thermostats. An additional pressure switch is available as an option to cycle the'* - $' fan closest to the header end of the condenser. This option is only recommended for condensers with large variations in condenser load caused by heat reclaim, hot gas defrost or a high percentage of compressor unloading. Number of Fans i Design T.D.* _ . _ Single Row . Double Row 30 25 _ 20 15 _ 10 2 4 35 45 55 60 70 3 6 15 30 40 55 65 4 8 0 15 30 45 60 5 10 0 10 20 35 55 6/7 12/14 0 0 10 30 50 *Based on maintaining 90° F minimum condensing temperature. 24 Table 17. Fan Cycling Thermostat Settings Number Single Row 2 of Fans Double Row 4 Design ' T.D. 30 25 20 15 10 1 60 65 70 75 80 Thermostat 2 Setting - l 3 6 30 25 20 15 10 60 65 70 75 80 40 55 60 65 75 4 8 30 25 20 15 10 60 65 70 75 80 50 55 65 70 75 30 40 50 60 70 5 10 30.., 25 20 15 10 60 65 70 75 80 55 60 . 65 70 75 45 50 60 65 70 30 35 40 55 65 6/7 12/14 30 . 25 20 15 10 55 65 70 75 80 50 60 65 70 75 40 55 60 65 70 30 45 50 60 65 25 35 40 50 60 Variable Speed Condenser head pressure control is provided by varying the air flow through the condenser by changing the RPM of the condenser fan. This control package is offered in combination with ambient fan cycling. The fan motor next to the header end of the condenser is the variable speed fan. The remainder of the fans are constant speed and are cycled separately using ambient sensing thermostats. On condensers with two rows of fans, two variable speed fans are provided (one per unit) and the remainder of the fans are constant speed and are cycled in pairs. Splitting Controls Additional head pressure can be provided by valving off a portion of the condenser circuit and removing that portion from the refrigeration circuit, or splitting the condenser. In addition to providing a means of head pressure control, this control will reduce the amount of refrigerant required to operate the condenser with a flooded head pressure control. Condenser splitting is recommended as a seasonal adjustment controlled by ambient temperature. A pressure switch is also provided as a backup control to prevent high head pressures from occurring during heavy load conditions. On condensers with a single row of fans the control package consists of an ambient sensing thermostat, a pressure switch The variable speed control package consists of a special variable speed motor (1140 RPM, single phase) and an electronic speed control which controls the speed of the motor in response to condensing pressure. Fan motor, speed control and all related components are all factory mounted and wired. Two speed controls are provided on units with two rows of fans to allow for separate control of each fan motor. sensing condensing pressure and a splitting relay. The splitting relay provides a set of dry contacts to control the valves required to split the condenser (valves supplied by others). On condensers with double rows of fans, additional controls and contactors are provided to cycle all of the fans on the side of the condenser which has been split off. Except as noted above, the splitting packages do not control fan cycling. It is recommended that fan cycling be controlled by combining the splitting package with pressure fan cycling. 25 Control Panels for Electronic Controllers Custom control panels can often be fabricated to interface with many of the microprocessor based electronic refrigeration controls. These panels often include individual motor fusing, individual fan Condenser Refrigerant Charge The normal summer operating charge for condensers is shown in Table 18. This charge can also be used in condensers with fan cycling kits, since added refrigerant is not required for mild weather control. Table 18 also contains the additional refrigerant charge required when using flooded style head pressure controls. motor contactors, splitting relays and printed circuit boards to interface with the microprocessor control. Contact the factory with your specific requirements. Combining fan cycling with flooded head pressure controls significantly reduces the amount of winter charge required to flood the condenser. Table 20 shows the refrigerant charge required when fan cycling is used in conjunction with a flooded style head pressure control. Table 18. Refrigerant Model* 1 Charge, Refrigerant R-22 Charge for summer Operation, Lbs. 8 Lbs. R-22 tor +60 7 Flooded Condenser Additional Refrigerant for Flooded Minimum +40 10 R-22 Condenser Lbs. For 20°F TD Ambient at +20 11 Charge Required Operation Condenser +0 11 -20 11 2 10 10 F 13 15, 15 ; 16 3 10 10 13 14 15 15 4 15 15 19 21 22 23 5 29 30 39 43 45 47 6 22 22 29 32 34 35 7 30 29 38 42 44 46 8 51 50 66 74 77 80 9 70 66 87 96 100 105 " 10 64 . 62 83 ..., ..: 92 95 99 11 86 83 110 122 127 132 12 102 100 132 147 153 159 13 118 117 155 172 179 186 14 19 20 27 29 31 32 15 29 30 39 44 46 47 16 40 39 51 57 59 62 17 44 44 58 64 67 70 18 58 59 78 86 90 94 19 104 99 131 146 152 158 20. 140 131 174 193 201 209 21 125 126 168 186 194 201 22 172 165 219 243.. 253 263 23 201 201 267 296 308 320 24 236 233 310 343 357 372 * See Model Cross Reference Table #21. Table 19. Flooded Charge Temperature Difference Factor Ambient, °F +60 +40 +20 0 -20 Design T.D.- - 30 - - 25 20 0.59 0.76 0.84 0.88 0.38 0.80 0.88 0.91 0.93 1.0 1.0 1.0 1.0 1.0 15 1.74 1.19 1.13 1.07 1.05 10 2.46 1.40 1.25 1.16 1.13 26 • • Table 20. Refrigerant Charge for Fan Cycling plus Flooded Condenser (lbs. R-22) Model* 1 Summer Charge 8 ` 40°F 7 25 20°F 8 TD 0°F 9 i -20°F 9 40°F 8 20°TD 20°F 9 0°F 10 i -20°F 10 40°F 9 15°TD 20°F 10 : 0°F 11 _ -20°F 11 - i 40°F 13 10°TD - L 20°F 12 - 0°F 12 -20°F 12 2 10 9 12 .13 14 11 13 14 15 13 14 15 16 17 18 17 18 3 10 1 6 8 10 4 8 10 11 7 10 12 13 10 13 14 14 4 15 2 9 12 15 7 12 15 17 12 16 18 19 17 19 21 22 5 29 4 17 24 29 14 24 30 34 24 31 36 39 33 38 41 43 6 22 0 3 10 15 0 10 16 20 0 17 22 25 0 24 27 29 7 30 0 4 13 20 0 12 20 26 0 21 27 32 0 29 34 38 8 51 0 0 8 22 0 6 23 35 0 22 38 48 0 37 52 61 9 70 0 0 11 29 0 8 31 46 0 29 51 63 0 49 71 80 10 64 0 0 0 15 0 0 17 33 0 0 39 52 0 0 60 70 11 86 0 0 0 19 0 0 22 44 0 0 50 69 0 0 78 93 12 102 0 0 0 6 0 0 8 37 0 0 37 69 0 0 66 100 13 118 0 0 0 0 0 0 0 29 0 0 0 69 0 0 0 108 14 19 3 12 17 20 9 17 21 23 15, 22 25 26 21 27 29 29 15 29 4 17 24 29 13 24 30 34 22 31 36 39 31 38 41 43 16 40 5 22 32 38 17 31 39 44 29 40 46 50 41 49 53 56 17 44 0 5 20 31 0 18 31 40 0 31 42 49 0 44 53 59 18 58 0 7 27 42 0 25 42 54 0 43 57 66 0 61 71 79 19 104 0 0 17 44 0 12 47 69 0 43 77 95 0 74 107 119 20 140 0 0 22 57 0 16 62 91 0 57 102 125 0 99 141 157 21 125 0 0 0 30 0 0 34 67 0 0 77 105 0 0 120 141 22 172 0 0 0 39 0 0 44 88 0 0 100 137 0 0 156 186 23 201 0 0 0 11 0 0 16 74 0 0 74 137 0 0 132 200 24 236 0 0 0 0 0 0 0 57 0 0 0 135 0 0 0 213 * See Model Cross Reference Table #21. Note: For all other refrigerants, use the table at the right. For alternate T.D.s, multiply by flooded charge T.D. factors in Table 9. Refrigerant Multiply charge by: R-134a R-404A R-410A 0.99 0.91 0.93 27. Table 21. Model Cross Reference Model Reference 1 LNH LNH-S01-A007 LNL LNL-S01-A007, LNX LNX-S01-A006 LNQ LNQ-S01-A005 LNE LNE-S01-A008', 2 LNH-S01-A009 LNL-S01-A008 LNX-S01-A008 LNQ-S01-A006 LNE-501-A009 3 LNH-S02-A011 LNL-502-A010 LNX-S02-A010 LNQ-S02-A008 LNE-S02-A011 4 LNH-S02-A015 LNL-S02-A014 LNX-502-A013 LNQ-S02-A010 LNE-S02-A015 5 LNH-S02-A017 LNL-502-A016 LNX-S02 A015 LNQ-502-A012 LNE-S02-A018 6 LNH-S03-A022 LNL-S03-A021 LNX-S03-A020 LNQ-S03-A016 LNE-S03-A023 7 LNH-503-A026 LNL-503-A024 LNX-503 A023'' LNQ-503-A017 LNE S03-A027' '": 8 LNH-SO4-A030 LNL-504-A028 LNX-504-A026 LNQ-SO4-A021 LNE-SO4-A031 9 LNH-SO4-A034 LNL-504-A032 LNX-SO4 A030 LNQ-SO4-A023 LNE 504 A036 10 LNH-S05-A037 LNL-505-A036 LNX-S05-A033 LNQ-S05-A026 LNE-S05-A039 11 LNH-S05-A044 LNL-505-A042 LNX-505-A038 LNQ-S05-A029 LNE-505-A047 12 LNH-506-A053 LNL-506-A050 LNX-506-A045 LNQ-S06-A034 LNE-506-A056 13 LNH-507-A061 LNL-S071A055 LNX-S07-A052 LNQ-507-A042 LNE-507-A065 14 LNH-D04-A021 LNL-D04-A020 LNX-D04-A020 LNQ-D04-A016 LNE-D04-A023 15 LNH-D04-A029 LNL-D04=A028 '`" LNX-D04-A026 :'LNQ-D04-A021 LNE-D04-A031 : 16 LNH-D04-A034 LNL-D04-A032 LNX-D04-A030 LNQ-D04-A023 LNE-D04-A036 17 LNH-D06-A044 LNL-D06-A042 LNX-D06-A040 LNQ-D06-A031 LNE-D06-A046 18 LNH-D06-A051 LNL-D06-A048 LNX-D06-A045 LNQ-D06-A034 LNE-D06-A054 19 LNH-D08-A058 LNL-D08-A056 LNX-D08-A053 LNQ-D08-A041 LNE-D08-A062, 20 LNH-D08-A068 LNL-D08-A065 LNX-D08-A061 LNQ-D08-A046 LNE-D08-A073 21 LNH-D10-A074 LNL-D10-A071 LNX-D10-A066 . LNQ-D10-A052 LNE-D10-A079, 22 LNH-D10-A088 LNL-D10-A083 LNX-D10-A076 LNQ-D10-A057 LNE-D10-A093 23 LNH-D12-A106 LNL-D12-A100 LNX-D12-A091 LNQ-D12-A069 LNE-D12-A112 24 LNH-D14-A123 LNL-D14-A110 LNX-D14-A104 LNQ-D14-A083 LNE-D14-A129 Calculate Refrigerant Charge Refrigeration operating charges are located in Table 18 for flooded condenser and Table 20 for fan cycling plus flooded condenser. Charge for flooded condenser = summer charge (Table 18) + additional flooding charge (Table 18) * flooded charge T.D, factor (Table 19) Charge for fan cycling + flooding = summer charge (Table 20) + additional charge for fan cycling (Table 20) Example: Obtain the summer charge for a LNH-S05-A037. What is the flooding charge required to operate this condenser at 0° ambient at a 20°T.D. with R-22 refrigerant? What is the reduction in operating charge if fan cycling is combined with flooding? Procedure: From Table 18, obtain the summer operating charge for a LNH-S05-A037 of 64 lbs. The charge for winter operation with flooded controls is equal to the summer operating charge of 64 lbs. plus the additional charge at 0° ambient (Table 18) of 95 lbs., times the flooded charge T.D. factor (Table 19) of 1.0 for 20°T.D. Charge for flooded condenser = 64 + (95) * 1.0 = 159 lbs. The charge for fan cycling plus flooded condenser is obtained using Table 20. Using this table obtain the additional charge for 20°T.D. at 0° ambient, which is 17 lbs. The total charge is the summer charge (64 Ibs.) plus the additional charge. Charge for fan cycle + flooding = 64 + 17 = 81 lbs. The savings in refrigerant charge = 159 - 81 = 78 Ibs. 28 Diagram 1. Typical Condenser Wiring Diagram With No Fan Cycle Controls • a r rp -.‹S • . N.• • -_-.• •!• •r 4.1•5.7 " 1.1 3 A • • • Er: ....—. 1 • . a. %, • . 41....' . . .. . • • • • II :"i 1 . .'.......... . •••1• 1 v ! : 1 • • • • 4 : I • 1 . i I : I .. . ••- i : i . %::/••••• •• •• •• .• ...; i I . ; • 1 . i 1 1 I I I ! ! • I : I . 1 .3 • I II ,,,giu ;••••••.......1 ...... ----•-- •.---.i T 1 "' a.• .71 • 1 .71 . .. eritr.111•3 11 L• 1•1•••••1•1••••• 3 ••••=11•••3•,• II 5. 71 e' : • .e., wm• ./•.. • ••• • ,i• •• ••••••• •.1.1. . • .•., ,•,.LIII "re •.: '•1: ‘...d...........•,............••.•....4 : I IN ..i.... 1 . I ... .. I • I , . 1..........--..............—...en.v.!..1 tiS • e •• .`•• i : I : , . .• .- i 1 .1. % •••••• .. ...... . .... i • 'it N...' 1 ; '"'. 1 • i 1 -._, . . ..... . ' • • 4 I • •F I ' 1 .......... ,. ...... . ., . I . i ....., ..; ?: ;". ! • 4! . 3 ..-.....--........_._......, 4 _.____I; 1 ; 1 . ...L I : 4 : .• • - • • 1 • . • — I• • ; ury r_7 i`-rq • • istrid Noll I I I fa-- • • it • : 29 Diagram 2. Typical Condenser Wiring Diagram With Fan Cycle Controls ewe ▪ 4.444 ti4- •• 4.P i' I t-4 I44.41 4 i; • • L4I 1 Y 144YYY•••r�Y• •'RV .lrT.••. 1n ram ; ..if.._ I.•••Ir•11l ' it ------••'•' r 1 '.4 Y,i•tiv.ei•rr•i —Ia. •I 4 ... • 41 .Ly:i�•. i� a ti 1�.1� i• 4 1; 1..:—..-1.. 4 I 1 i1 ill L I Er: 1 •...5 !l..1154 k 'Y { i ,y I.L. 1 vX1 •_ 1 ........1 • a. ...-. I L1• 1 4 ▪ I •I .— r. 1 1 1 i •• . •I i I r•• IA.I .f 4 .. . I ti .• I ' I i I I 1 I I 1 I I 1 I E r I ,_i 1 1 I -I 1 • x1 IIA ; r1s.:' 1 1 4. I4 x 11 a1 • r •Y ' '1 4 r'. 7 • .1 L 1 .1 • I IM y 1 h14• titY i . I • :•• I Irby Ifu • 4, P.i I i::•V :.1:1ti931 1.111.d ,^r 30 • Sound Data for Altus and 1140 Series dBA @ 10 ft. auo 730 63,0 60 0 aan 5QA 430 0 Unit Sound Data (dBA @ 10 ft.) 1-- -Law C L.11L 10 Number of Fares Unit Sound Data (dBA @ 10 ft.) 17 Fans 1 LNH 72.3 LNL 63.4 1 LNX 60.8 L LNQ 49.6 2 75:3 66.4 63.8 52.6 3 77.1 68.1 65.6 54.4 4 78.3 69.4 66.8 55.6 5 79.3 70.3 67.8 56.6 6 80.1 71.1 68.6 57.4 7 80.8 71.8 69.3 58.1 8 81.3 72.4 69.8 58.6 10 82.3 73.4 70.8 59.6 12 83.1 74.1 71.6 60.4 14 83.8 74.8 72.3 61.1 14 31 r II .51,• mom -7' • For more information on Larkin products, contact your Larkin Sales Representative or visit us at www.larkinproducts.com fria4ter Of C4i fig A Brand of Heatcraft Refrigeration Products LLC 2175 West Park Place Blvd. • Stone Mountain, GA • 30087 800.848.9889 • FAX 770.465.5990 www.larkinproducts.com Since product improvement is a continuing effort, we reserve the right to make changes in specifications without notice. Version 002 PERMIT COORD COPY PLAN REVIEW/ROUTING SLIP PERMIT NUMBER: M14-0205 DATE: 11/12/14 PROJECT NAME: COSTCO SITE ADDRESS: 400 COSTCO DR X Original Plan Submittal Response to Correction Letter # Revision # before Permit Issued Revision # after Permit Issued DEPARTMENTS: AWC Building Division Public Works ❑ PCM of Iik Fire Prevention Structural Planning Division Permit Coordinator II PRELIMINARY REVIEW: Not Applicable (no approval/review required) DATE: 11/13/14 Structural Review Required REVIEWER'S INITIALS: DATE: APPROVALS OR CORRECTIONS: Approved Corrections Required Approved with Conditions Denied (corrections entered in Reviews) (ie: Zoning Issues) DUE DATE: 12/11/14 Notation: REVIEWER'S INITIALS: DATE: Permit Center Use Only CORRECTION LETTER MAILED: Departments issued corrections: Bldg ❑ Fire ❑ Ping ❑ PW ❑ Staff Initials: 12/18/2013 KEY MECH CO OF WASHINGT0 T Page 1 of 2 Washington State Department of Labor & Industries KEY MECH CO OF WASHINGTON Owner or tradesperson HEISLER, ROBERT L Principals HEISLER, ROBERT L LEONARD, FRANK W SANDAHL, LEE F Doing business as KEY MECH CO OF WASHINGTON WA UBI No. 600 196 154 19430 68TH AVE S STE B KENT, WA98032 253-872-7392 KING County Business type Corporation License Verify the contractor's active registration / license / certification (depending on trade) and any past violations. Construction Contractor License specialties GENERAL License no. KEYMEW*240NZ Effective — expiration 08/09/1976— 04/01/2015 Bond LIBERTY MUTUAL INS CO Bond account no. 023011682 Received by L&I 03/23/2009 Bond history Insurance Hartford Fire Ins Co Policy no. 52UENOE0154 Received by L&I 03/31/2014 Active. Meets current requirements. $12,000.00 Effective date 04/01/2009 Expiration date Until Canceled $1,000,000.00 Effective date 03/31 /2013 Expiration date https://secure.lni.wa.gov/verify/Detail.aspx?UBI=600196154&LIC=KEYMEW*240NZ&SAW= 11/19/2014